Liebe Besucherinnen und Besucher,
heute ab 15 Uhr feiern wir unser Sommerfest und sind daher nicht erreichbar. Ab morgen sind wir wieder wie gewohnt für Sie da. Wir bitten um Ihr Verständnis – Ihr Team von Sack Fachmedien
E-Book, Deutsch, 42 Seiten
Diem Über Ellipsen auf einem Ellipsoid, deren Axen gegebenen einfachen Bedingungen genügen, insbesondere über kongruente Ellipsen
Nachdruck 2020
ISBN: 978-3-11-232618-3
Verlag: De Gruyter
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Deutsch, 42 Seiten
ISBN: 978-3-11-232618-3
Verlag: De Gruyter
Format: PDF
Kopierschutz: 1 - PDF Watermark
Keine ausführliche Beschreibung für "Über Ellipsen auf einem Ellipsoid, deren Axen gegebenen einfachen Bedingungen genügen, insbesondere über kongruente Ellipsen" verfügbar.
Zielgruppe
College/higher education;
Autoren/Hrsg.
Weitere Infos & Material
Frontmatter -- VORWORT -- INHALT -- § 1. Axenkomplex -- § 2. Axen, Inhalt und Asymptotenwinkel der Ellipse, welche eine gegebene Ebene aus einem gegebenen Ellipsoid ausschneidet -- § 3. Axen einer Ellipse auf dem Ellipsoid, deren Mittelpunkt gegeben ist -- § 4. Ort der Mittelpunkte von Ellipsen auf einem Ellipsoid, welche die eine Axe gleich einer gegebenen Länge haben -- § 5. Einhüllende der Ebenen von Ellipsen, welche auf einem Ellipsoid liegen, die eine Axe gleich haben, und deren Ebenen ein ihm ähnliches, ähnlich liegendes und konzentrisches Ellipsoid berühren -- § 6. Flächengleiche Ellipsen auf einem Ellipsoid -- § 7. Ort der Mittelpunkte und Pole von ähnlichen Ellipsen auf einem Ellipsoid -- § 8. Beziehungen, welche zwischen den Axen zweier benachbarter Ellipsen auf einem Ellipsoid bestehen -- § 9. Geometrische Deutung der im § 8 gefundenen Bedingungen -- § 10. Ort der Mittelpunkte und Pole kongruenter Ellipsen auf einem Ellipsoid -- § 11. Einhüllende von Ellipsen, die auf einem Ellipsoid liegen und einer gegebenen Ellipse kongruent sind. (Kurven x = const.) -- § 12. Die Kurven ?. = const -- § 13. Ort der Punkte, in welchen sich die Ebenen von drei benachbarten kongruenten Ellipsen auf einem Ellipsoid schneiden -- § 14. Über die Gestalt einer Kurve x = const. Anzahl der reellen kongruenten Ellipsen, welche durch einen gegebenen Punkt des Ellipsoides gehen -- Tafel 1 -- Tafel 2