E-Book, Englisch, Band 133, 392 Seiten, eBook
Reihe: Lecture Notes in Statistics
E-Book, Englisch, Band 133, 392 Seiten, eBook
Reihe: Lecture Notes in Statistics
ISBN: 978-1-4612-1732-9
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
I Dirichlet and Related Processes.- 1 Computing Nonparametric Hierarchical Models.- 2 Computational Methods for Mixture of Dirichlet Process Models.- 3 Nonparametric Bayes Methods Using Predictive Updating.- 4 Dynamic Display of Changing Posterior in Bayesian Survival Analysis.- 5 Semiparametric Bayesian Methods for Random Effects Models.- 6 Nonparametric Bayesian Group Sequential Design.- II Modeling Random Functions.- 7 Wavelet-Based Nonparametric Bayes Methods.- 8 Nonparametric Estimation of Irregular Functions with Independent or Autocorrelated Errors.- 9 Feedforward Neural Networks for Nonparametric Regression.- III Levy and Related Processes.- 10 Survival Analysis Using Semiparametric Bayesian Methods.- 11 Bayesian Nonparametric and Covariate Analysis of Failure Time Data.- 12 Simulation of Lévy Random Fields.- 13 Sampling Methods for Bayesian Nonparametric Inference Involving Stochastic Processes.- 14 Curve and Surface Estimation Using Dynamic Step Functions.- IV Prior Elicitation and Asymptotic Properties 15 Prior Elicitation for Semiparametric Bayesian Survival Analysis.- 16 Asymptotic Properties of Nonparametric Bayesian Procedures.- 17 Modeling Travel Demand in Portland, Oregon.- 18 Semiparametric PK/PD Models.- 19 A Bayesian Model for Fatigue Crack Growth.- 20 A Semiparametric Model for Labor Earnings Dynamics.