Buch, Englisch, 218 Seiten, Format (B × H): 190 mm x 234 mm, Gewicht: 450 g
Reihe: Advances in ubiquitous sensing applications for healthcare
Buch, Englisch, 218 Seiten, Format (B × H): 190 mm x 234 mm, Gewicht: 450 g
Reihe: Advances in ubiquitous sensing applications for healthcare
ISBN: 978-0-12-818004-4
Verlag: Elsevier Science Publishing Co Inc
Classification Techniques for Medical Image Analysis and Computer Aided Diagnosis covers the most current advances on how to apply classification techniques to a wide variety of clinical applications that are appropriate for researchers and biomedical engineers in the areas of machine learning, deep learning, data analysis, data management and computer-aided diagnosis (CAD) systems design. The book covers several complex image classification problems using pattern recognition methods, including Artificial Neural Networks (ANN), Support Vector Machines (SVM), Bayesian Networks (BN) and deep learning. Further, numerous data mining techniques are discussed, as they have proven to be good classifiers for medical images.
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Medizintechnik, Biomedizintechnik
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Medizintechnik, Biomedizintechnik, Medizinische Werkstoffe
- Technische Wissenschaften Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie Biotechnologie
Weitere Infos & Material
1. Classification of Unhealthy and Healthy Neonates in Neonatal Intensive Care Units Using Medical Thermography Processing and Artificial Neural Network2. Use of Health-related Indices and Cassification Methods in Medical Data3. Image Analysis for Diagnosis and Early Detection of Hepatoprotective Activity4. Characterization of Stuttering Dysfluencies using Distinctive Prosodic and Source Features5. A Deep Learning Approach for Patch-based Disease Diagnosis from Microscopic Images6. A Breast Tissue Characterization Framework Using PCA and Weighted Score Fusion of Neural Network Classifiers7. Automated Arrhythmia Classification for Monitoring Cardiac Patients Using Machine Learning Techniques8. IoT-based Fluid and Heartbeat Monitoring For Advanced Healthcare