Devasahayam | Signals and Systems in Biomedical Engineering: Physiological Systems Modeling and Signal Processing | Buch | 978-981-13-3530-3 | sack.de

Buch, Englisch, 468 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 887 g

Devasahayam

Signals and Systems in Biomedical Engineering: Physiological Systems Modeling and Signal Processing


Third Auflage 2019
ISBN: 978-981-13-3530-3
Verlag: Springer Nature Singapore

Buch, Englisch, 468 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 887 g

ISBN: 978-981-13-3530-3
Verlag: Springer Nature Singapore


Physiology is a set of processes that maintain homeostasis, and physiological measurement is a means of observing these processes. Systems theory and signal processing offer formal tools for the study of processes and measured quantities.

This book shows that systems modeling can be used to develop simulations of physiological systems, which use formal relations between the underlying processes and the observed measurements. The inverse of such relations suggest signal processing tools that can be applied to interpret experimental data. Both signal processing and systems modeling are invaluable in the study of human physiology. Discussing signal processing techniques ranging from filtering and spectrum analysis to wavelet analysis, the book uses graphs and analogies to supplement the mathematics and make the book more accessible to physiologists and more interesting to engineers.

Physiological systems modeling helps in both gaining insight and generating methods of analysis. This book shows how numerical computation with graphical display, haptics and multimedia can be used to  simulate physiological systems. In this third edition the simulations are more closely related to clinical examination and experimental physiology than in previous editions.

Detailed models of nerve and muscle at the cellular and systemic levels, and simplified models of cardiovascular blood flow provide examples for the mathematical methods and computer simulations. Several of the models are sufficiently sophisticated to be of value in understanding real world issues like neuromuscular disease. The book features expanded problem sets and a link to extra downloadable material containing simulation programs that are solutions to the theory developed in the text.

Devasahayam Signals and Systems in Biomedical Engineering: Physiological Systems Modeling and Signal Processing jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Module1_Introduction to Signal Measurement and Analysis in Physiology.- Chapter 1.1 Measurement, Analysis, Modelling and Simulation.- Chapter 1.2. Physiological Measurement – ECG as an example.- Chapter 1.3. Sensors and Measurement.- Chapter 1.4. Characterizing Transducers – A Systems Approach.- Chapter 1.5. Interference and Noise.- Chapter 1.6. Simulation of Systems and Virtual Experiments.- Chapter 1.7. Execises.- Module 2_Basics of Signals and Systems.- Chapter 2.1. Time Domain Signals and Systems.- Chapter 2.2. Linear Systems: Impulse Response.- Chapter 2.3. Frequency Decomposition of Signals.- Chapter 2.4. Frequency Response and Pole–Zero plots.- Chapter 2.5. Random Signals.- Chapter 2.6. Exercises.- Module 3_Signal Filtering and System Control for Physiology.- Chapter 3.1. Filters in Different Domains- Mechanical filters, particle filters, electrical filters.- Chapter 3.2. A Common Sense View of Optimal filtering.- Chapter 3.3. Formal Definition of Optimal Filtering.- Chapter 3.4. Standard Filters: LPF, HPF, BPF, BSF.- Chapter 3.5.          Realization of Simple Filters, Ensemble Averaging.- Chapter 3.6. Filtering Physiological Signals.- Chapter 3.7. Feedback Control Systems.- Chapter 3.8. Exercises.- Module 4_Digitization and Discrete Systems.- Chapter 4.1. Digitization – From the Physical World to Computers and Back Again.- Chapter 4.2. Sampling, Quantization and Reconstruction Methods.- Chapter 4.3. Discrete Systems – Z transforms.- Chapter 4.4. Discretization of Systems – Bilinear transforms.- Chapter 4.5. Digital Feedback Control and Hybrid Systems.- Chapter 4.6.Exercises.- Module 5_Discrete Signal Processing.- Chapter 5.1. Digital Filtering and Sytem Identification.- Chapter 5.2. Discrete Fourier Transforms.- Chapter 5.3. Power Spectrum and Short-Time Fourier Transform.- Chapter 5.4. The Wavelet Transform.- Chapter 5.5. Time-Series Analysis.- Chapter 5.6. Programming Exercises.- Module 6_Numerical Methods, Graphics and Haptics for Modeling.- Chapter 6.1. Introduction to Computer Simulations.- Chapter 6.2. Geometry of 3D graphics.- Chapter 6.3. Animation and Image Manipulation.- Chapter 6.4. Virtual Experiments.- Chapter 6.5. Using electromechanical systems to provide “feel” – haptics.- Chapter 6.6. Basic haptics design.- Chapter 6.7. Exercises.- Module 7_Model-based Analysis of Physiological Systems.- Chapter 7.1. Biophysical Models and Black-Box Models.- Chapter 7.2. Purpose of Physiological Modelling and Signal Analysis.- Chapter 7.3. System identification in Physiology – sensory receptors, eye movement.- Chapter 7.4. Opening the Loop – Estimating Loop Transfer Function.- Chapter 7.5. Experimental Methods for System identification.- Chapter 7.6. Model-Based Noise Reduction and Feature Extraction.- Chapter 7.7. Exercises.- Module 8_Nerve Action Potential, Propagation and Stimulation of Tissue.- Chapter 8.1.            Nerve Excitation and Propagation.- Chapter 8.2. The Hodgkin-Huxley Model, Fluctuation Analysis.- Chapter 8.3.Action Potential Propagation.- Chapter 8.4. Stimulation of Nerves within Tissue.- Chapter 8.5. Strength-Duration and Recruitment Relations.- Chapter 8.6. Electrical and Magnetic Stimulation.- Chapter 8.7. Exercises.- Module 9_Skeletal Muscle Contraction.- Chapter 9.1. Skeletal Muscle Behaviour, Structure and Organization.- Chapter 9.2. The Sliding Filament Model.- Chapter 9.3. Force Generation: Huxley‘s Model.- Chapter 9.4. Linearization of Skeletal Muscle Models.- Chapter 9.5. Simple haptics models of skeletal muscle as a non-linear spring.- Chapter 9.6. Applications of Muscle Modelling.- Chapter 9.7.Exercises.- Module 10_Neural Firing Analysis.- Chapter 10.1. Neural Information Transmission.- Chapter 10.2. Pulse sequences and Modulation Theory.- Chapter 10.3.Estimating Nerve Firing Rate.- Chapter 10.4. Spike Detection and Demodulation.- Chapter 10.5. Applications of Firing Rate Demodulation.- Chapter 10.6. Exercise.- Module 11_The Electromyogram – Modelling and Analysis.- Chapter 11.1.Recording Myoelectric Signals.- Chapter 11.2. Electrode Transfer Function.- Chapter 11.3. Motor Unit Action Potential.- Chapter 11.4. Voluntary EMG Model.- Chapter 11.5. EMG Analysis.- Chapter 11.6. Hear, see, feel – adding realism to EMG models.- Chapter 11.7. Exercises.- Module 12_Neuromuscular Control.- Chapter 12.1.Neuromuscular Reflex.- Chapter 12.2. Unit of Movement: Two Muscle Joint.- Chapter 12.3. Modelling Reflex Control of Movement.- Chapter 12.4. Movement Analysis.- Chapter 12.5. Understanding Pathology Using Neuromuscular Models.- Chapter 12.6. Incorporating haptics in neuromuscular models.- Chapter 12.7. Simulating spasticity – what we can simulate is what we understand.- Chapter 12.8. Exercises.- Module 13_Cardiovascular Modelling.- Chapter 13.1. The Cardiovascular System.- Chapter 13.2. Modelling Blood Flow.- Chapter 13.3. Electrical Analogue of Fluid Flow in Vessels.- Chapter 13.4. Model of Coronary Circulation.- Chapter 13.5. Simulating the “feel” of pulse auscultation.- Chapter 13.6.Applications of Cardiovascular Modelling.- Chapter 13.7. Exercises.-Module 14_Immune Response to Infection.- Chapter 14.1. The Immune Response.-Chapter 14.2. Linearized Model of the Immune Response.- Chapter 14.3. System Equations.- Chapter 14.4. Stability Analysis.- Chapter 14.5. Extending the Model.- Chapter 14.6. Exercises


Suresh Devasahayam has taught students of science, technology, engineering, and medicine for more than 25 years, first at the Indian Institute of Technology, Bombay, for about 12 years and then at the Christian Medical College, Vellore.

In teaching such a variety of students, it has been important to span a wide range of language skills – from formal mathematical language for students of the physical sciences to natural language for students of the biological sciences. These two extremes of communication in science also represent the difference between theoretical argument from first principles and empirical knowledge; therefore, his research and teaching has included both theoretical analysis and physiological experiments. He has greatly enjoyed the extension of language by the use of dynamic graphs and animations through computer simulations.

His formal training includes a Baccalaureate in Electronics and Communications Engineering from the College of Engineering, Guindy, followed by Master’s and Doctoral degrees in Bioengineering from the University of Illinois at Chicago. His research is in the areas of physiological measurement, medical instrumentation, signal processing, systems modeling, and neurorehabilitation.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.