E-Book, Englisch, 436 Seiten
Reihe: De Gruyter Textbook
E-Book, Englisch, 436 Seiten
Reihe: De Gruyter Textbook
ISBN: 978-3-11-028311-2
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Zielgruppe
Graduate Students, PhD Students, and Lecturers in Mathematics, Physics, Engineering Sciences, Scientific Computing, and Applied Mathematics; Academic Libraries
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1;Preface;5
2;Outline;13
3;1 Elementary Partial Differential Equations;17
3.1;1.1 Laplace and Poisson Equation;17
3.1.1;1.1.1 Boundary Value Problems;18
3.1.2;1.1.2 Initial Value Problem;22
3.1.3;1.1.3 Eigenvalue Problem;24
3.2;1.2 Diffusion Equation;27
3.3;1.3 Wave Equation;30
3.4;1.4 Schrödinger Equation;35
3.5;1.5 Helmholtz Equation;38
3.5.1;1.5.1 Boundary Value Problems;38
3.5.2;1.5.2 Time-harmonic Differential Equations;39
3.6;1.6 Classification;41
3.7;1.7 Exercises;43
4;2 Partial Differential Equations in Science and Technology;46
4.1;2.1 Electrodynamics;46
4.1.1;2.1.1 Maxwell Equations;46
4.1.2;2.1.2 Optical Model Hierarchy;49
4.2;2.2 Fluid Dynamics;52
4.2.1;2.2.1 Euler Equations;53
4.2.2;2.2.2 Navier-Stokes Equations;56
4.2.3;2.2.3 Prandtl’s Boundary Layer;61
4.2.4;2.2.4 Porous Media Equation;63
4.3;2.3 Elastomechanics;64
4.3.1;2.3.1 Basic Concepts of Nonlinear Elastomechanics;64
4.3.2;2.3.2 Linear Elastomechanics;68
4.4;2.4 Exercises;71
5;3 Finite Difference Methods for Poisson Problems;74
5.1;3.1 Discretization of Standard Problem;74
5.1.1;3.1.1 Discrete Boundary Value Problems;75
5.1.2;3.1.2 Discrete Eigenvalue Problem;80
5.2;3.2 Approximation Theory on Uniform Grids;83
5.2.1;3.2.1 Discretization Error in L2;85
5.2.2;3.2.2 Discretization Error in L?;88
5.3;3.3 Discretization on Nonuniform Grids;90
5.3.1;3.3.1 One-dimensional Special Case;90
5.3.2;3.3.2 Curved Boundaries;92
5.4;3.4 Exercises;95
6;4 Galerkin Methods;98
6.1;4.1 General Scheme;98
6.1.1;4.1.1 Weak Solutions;98
6.1.2;4.1.2 Ritz Minimization for Boundary Value Problems;101
6.1.3;4.1.3 Rayleigh-Ritz Minimization for Eigenvalue Problems;105
6.2;4.2 Spectral Methods;107
6.2.1;4.2.1 Realization by Orthogonal Systems;108
6.2.2;4.2.2 Approximation Theory;112
6.2.3;4.2.3 Adaptive Spectral Methods;115
6.3;4.3 Finite Element Methods;120
6.3.1;4.3.1 Meshes and Finite Element Spaces;120
6.3.2;4.3.2 Elementary Finite Elements;123
6.3.3;4.3.3 Realization of Finite Elements;133
6.4;4.4 Approximation Theory for Finite Elements;140
6.4.1;4.4.1 Boundary Value Problems;140
6.4.2;4.4.2 Eigenvalue Problems;143
6.4.3;4.4.3 Angle Condition for Nonuniform Meshes;148
6.5;4.5 Exercises;151
7;5 Numerical Solution of Linear Elliptic Grid Equations;155
7.1;5.1 Direct Elimination Methods;156
7.1.1;5.1.1 Symbolic Factorization;157
7.1.2;5.1.2 Frontal Solvers;159
7.2;5.2 Matrix Decomposition Methods;162
7.2.1;5.2.1 Jacobi Method;164
7.2.2;5.2.2 Gauss-Seidel Method;166
7.3;5.3 Conjugate Gradient Method;168
7.3.1;5.3.1 CG-Method as Galerkin Method;168
7.3.2;5.3.2 Preconditioning;171
7.3.3;5.3.3 Adaptive PCG-method;175
7.3.4;5.3.4 A CG-variant for Eigenvalue Problems;177
7.4;5.4 Smoothing Property of Iterative Solvers;182
7.4.1;5.4.1 Illustration for the Poisson Model Problem;182
7.4.2;5.4.2 Spectral Analysis for Jacobi Method;186
7.4.3;5.4.3 Smoothing Theorems;187
7.5;5.5 Iterative Hierarchical Solvers;192
7.5.1;5.5.1 Classical Multigrid Methods;194
7.5.2;5.5.2 Hierarchical-basis Method;202
7.5.3;5.5.3 Comparison with Direct Hierarchical Solvers;205
7.6;5.6 Power Optimization of a Darrieus Wind Generator;206
7.7;5.7 Exercises;212
8;6 Construction of Adaptive Hierarchical Meshes;215
8.1;6.1 A Posteriori Error Estimators;215
8.1.1;6.1.1 Residual Based Error Estimator;218
8.1.2;6.1.2 Triangle Oriented Error Estimators;223
8.1.3;6.1.3 Gradient Recovery;227
8.1.4;6.1.4 Hierarchical Error Estimators;231
8.1.5;6.1.5 Goal-oriented Error Estimation;234
8.2;6.2 Adaptive Mesh Refinement;235
8.2.1;6.2.1 Equilibration of Local Discretization Errors;236
8.2.2;6.2.2 Refinement Strategies;241
8.2.3;6.2.3 Choice of Solvers on Adaptive Hierarchical Meshes;245
8.3;6.3 Convergence on Adaptive Meshes;245
8.3.1;6.3.1 A Convergence Proof;246
8.3.2;6.3.2 An Example with a Reentrant Corner;248
8.4;6.4 Design of a Plasmon-Polariton Waveguide;252
8.5;6.5 Exercises;256
9;7 Adaptive Multigrid Methods for Linear Elliptic Problems;258
9.1;7.1 Subspace Correction Methods;258
9.1.1;7.1.1 Basic Principle;259
9.1.2;7.1.2 Sequential Subspace Correction Methods;262
9.1.3;7.1.3 Parallel Subspace Correction Methods;267
9.1.4;7.1.4 Overlapping Domain Decomposition Methods;271
9.1.5;7.1.5 Higher-order Finite Elements;278
9.2;7.2 Hierarchical Space Decompositions;283
9.2.1;7.2.1 Decomposition into Hierarchical Bases;284
9.2.2;7.2.2 L2-orthogonal Decomposition: BPX;290
9.3;7.3 Multigrid Methods Revisited;294
9.3.1;7.3.1 Additive Multigrid Methods;294
9.3.2;7.3.2 Multiplicative Multigrid Methods;298
9.4;7.4 Cascadic Multigrid Methods;301
9.4.1;7.4.1 Theoretical Derivation;301
9.4.2;7.4.2 Adaptive Realization;307
9.5;7.5 Eigenvalue Problem Solvers;312
9.5.1;7.5.1 Linear Multigrid Method;313
9.5.2;7.5.2 Rayleigh Quotient Multigrid Method;315
9.6;7.6 Exercises;318
10;8 Adaptive Solution of Nonlinear Elliptic Problems;322
10.1;8.1 Discrete Newton Methods for Nonlinear Grid Equations;323
10.1.1;8.1.1 Exact Newton Methods;324
10.1.2;8.1.2 Inexact Newton-PCG Methods;328
10.2;8.2 Inexact Newton-Multigrid Methods;331
10.2.1;8.2.1 Hierarchical Grid Equations;331
10.2.2;8.2.2 Realization of Adaptive Algorithm;333
10.2.3;8.2.3 An Elliptic Problem Without a Solution;337
10.3;8.3 Operation Planning in Facial Surgery;340
10.4;8.4 Exercises;343
11;9 Adaptive Integration of Parabolic Problems;345
11.1;9.1 Time Discretization of Stiff Differential Equations;345
11.1.1;9.1.1 Linear Stability Theory;346
11.1.2;9.1.2 Linearly Implicit One-step Methods;352
11.1.3;9.1.3 Order Reduction;359
11.2;9.2 Space-time Discretization of Parabolic PDEs;365
11.2.1;9.2.1 Adaptive Method of Lines;366
11.2.2;9.2.2 Adaptive Method of Time Layers;374
11.2.3;9.2.3 Goal-oriented Error Estimation;383
11.3;9.3 Electrical Excitation of the Heart Muscle;386
11.3.1;9.3.1 Mathematical Models;386
11.3.2;9.3.2 Numerical Simulation;387
11.4;9.4 Exercises;390
12;A Appendix;392
12.1;A.1 Fourier Analysis and Fourier Transform;392
12.2;A.2 Differential Operators in ?3;393
12.3;A.3 Integral Theorems;395
12.4;A.4 Delta-Distribution and Green's Functions;399
12.5;A.5 Sobolev Spaces;404
12.6;A.6 Optimality Conditions;409
13;B Software;410
13.1;B.1 Adaptive Finite Element Codes;410
13.2;B.2 Direct Solvers;411
13.3;B.3 Nonlinear Solvers;411
14;Bibliography;413
15;Index;427