Desgranges / Delhommelle | Molecular Networking | Buch | 978-1-032-67081-2 | sack.de

Buch, Englisch, 248 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 478 g

Desgranges / Delhommelle

Molecular Networking

Statistical Mechanics in the Age of AI and Machine Learning
1. Auflage 2025
ISBN: 978-1-032-67081-2
Verlag: CRC Press

Statistical Mechanics in the Age of AI and Machine Learning

Buch, Englisch, 248 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 478 g

ISBN: 978-1-032-67081-2
Verlag: CRC Press


The book builds on the analogy between social groups and assemblies of molecules to introduce the concepts of statistical mechanics, machine learning and data science. Applying a data analytics approach to molecular systems, we show how individual (molecular) features and interactions between molecules, or "communication" processes, allow for the prediction of properties and collective behavior of molecular systems - just as polling and social networking shed light on the behavior of social groups. Applications to systems at the cutting-edge of research for biological, environmental, and energy applications are also presented.

Key features:

- Draws on a data analytics approach of molecular systems

- Covers hot topics such as artificial intelligence and machine learning of molecular trends

- Contains applications to systems at the cutting-edge of research for biological, environmental and energy applications

- Discusses molecular simulation and links with other important, emerging techniques and trends in computational sciences and society

- Authors have a well-established track record and reputation in the field

Desgranges / Delhommelle Molecular Networking jetzt bestellen!

Zielgruppe


Academic, Postgraduate, Professional Practice & Development, and Undergraduate Advanced

Weitere Infos & Material


Section I Molecular networking analytics

Chapter 1 Probabilities, distributions and statistics

1.1 MECHANICS

1.1.1 Newton, Lagrange, and Hamilton

1.1.2 Wave function and uncertainty

1.1.3 Quantum Energy and Density of States

1.2 THERMODYNAMICS

1.2.1 Processes, Work, and Heat
1.2.2 First, Second and Third Laws

1.2.3 Changing Conditions: Legendre Transformations

1.3 STATISTICS AND DISTRIBUTIONS

1.3.1 Maxwell-Boltzmann distribution

1.3.2 Phase space and probability distribution

1.3.3 Micro-Macro Connection

Chapter 2 Communication Rules in Molecular Systems

2.1 COMMUNICATION AND INTERACTIONS
2.1.1 Interactions in a Quantum World

2.1.2 Coarse-graining: Tight-Binding

2.1.3 Further coarse-graining: a classical world

2.2 INTERACTIONS BETWEEN MOLECULES

2.2.1 Molecular Properties and Interactions
2.2.2 2-Body vs. Many-Body Potentials

2.2.3 Towards Macro- and Bio-molecules

2.3 BEYOND INTERACTIONS

2.3.1 Signaling

2.3.2 Phoresis and Active Matter

2.3.3 Chemotaxis

Chapter 3 An Ensemble Approach: Finding descriptors and reducing dimensions
3.1 COLLECTIONS AND ENSEMBLES

3.1.1 Making Sense of the Microscopic Big Data
3.1.2 Defining Ensembles

3.1.3 The Concept of the Most Probable Distribution
3.2 INDIVIDUALS IN AN ISOTHERMAL WORLD: THE CANONICAL ENSEMBLE

3.2.1 Key Parameters and Multipliers

3.2.2 The Central Partition Function

3.2.3 Partition Function and Thermodynamics

3.3 INDIVIDUALS IN ISOLATION: THE MICROCANONICAL ENSEMBLE

3.3.1 Number and Density of States

3.3.2 Boltzmann’s Entropy

3.3.3 Thermodynamic Functions

Chapter 4 Accounting for Individual Features and Changes

4.1 MOLECULES IN A CANONICAL WORLD

4.1.1 Features and Consequences

4.1.2 The Case of Diatomic Molecules

4.1.3 Molecular Symmetry and Polyatomic Molecules

4.2 CONNECTING WITH THE MACROSCOPIC WORLD

4.2.1 Are all Features Essential?

4.2.2 Model-Partition Function Interplay

4.2.3 Thermodynamic properties and Ideality

4.3 CHANGING IDENTITIES: CHEMICAL REACTIONS
4.3.1 Reaction properties and Parameters

4.3.2 Partition Functions and Equilibrium Constants

4.3.3 The Activated Complex

Chapter 5 Machine Learning and Molecular Systems

5.1 DISTINGUISHING FROM THE MOLECULAR CROWD

5.1.1 Labels and Classes

5.1.2 Identifying and Handling Patterns

5.1.3 Learning under supervision

5.2 QUANTITATIVE MODELS FOR MOLECULAR GROUPS

5.2.1 Training regression models

5.2.2 Mapping numbers: Artificial Neural Networks

5.2.3 Optimization through back-propagation

5.3 BEYOND ARTIFICIAL NEURAL NETWORKS
5.3.1 Learning by watching: Convolutional Neural Networks
5.3.2 Time sequences and Recurrent Neural Networks

5.3.3 Understanding policies: the Advent of Reinforcement Learning

Section II Static trends: equilibrium statistics

Chapter 6 Polling a molecular population: Monte Carlo and Wang Landau simulations
6.1 THE BIRTH OF THE MONTE CARLO METHOD
6.1.1 Randomness and Integration

6.1.2 Sample Mean Approach

6.1.3 The Concept of Importance Sampling

6.2 THE METROPOLIS METHOD

6.2.1 Markov Chain and Stochastic Matrix

6.2.2 Randomness and Acceptance

6.2.3 Implementation and Testing

6.3 WANG-LANDAU SAMPLING
6.3.1 A Paradigm Shift: Evaluating the Density of States

6.3.2 The Biased Distribution

6.3.3 A Twist in the Monte Carlo plot

Chapter 7 Molecular networking in insulation: adiabatic ensembles

7.1 ADIABATIC PROCESSES AND ENSEMBLES

7.1.1 Adiabatic vs. Isothermal

7.1.2 The Concept of Heat Function

7.1.3 Eight Statistical Ensembles

7.2 MECHANICS OF ADIABATIC ENSEMBLES

7.2.1 Microcanonical distribution and thermodynamic equations
7.2.2 The (µ, P,R) Ensemble

7.2.3 A Full Picture for the Four Adiabatic Ensembles

7.3 MONTE CARLO EXPLORATION OF ADIABATIC ENSEMBLES

7.3.1 Exploring the Microcanonical Ensemble

7.3.2 Musing in the (N, P,H) Ensemble

7.3.3 Direct Entropy Evaluations in the (µ, P,R) Ensemble

Chapter 8 Networking under one (or more) cues: isothermal ensembles

8.1 THERMAL AND CHEMICAL CUES

8.1.1 The Grand-Canonical Ensemble

8.1.2 Monte Carlo Exploration

8.1.3 Grand Partition Function Determination
8.2 THERMAL AND MECHANICAL CUES

8.2.1 The Isothermal-Isobaric Ensemble

8.2.2 Properties Calculations

8.2.3 Partition Function Computation

8.3 VARIATIONS AND APPLICATIONS

8.3.1 Multi-Component Systems and Semi-Grand Approach

8.3.2 A First Step towards Coexistence: Gibbs Ensemble Monte Carlo
method

8.3.3 Recycling and Reweighting

Chapter 9 Collective properties from partition functions

9.1 GENERATING DATA ON PARTITION FUNCTIONS

9.1.1 Starting from A

9.1.2 From dilute to condensed phases

9.1.3 Direct determination of partition functions

9.2 THE CASE OF PHASE TRANSITIONS

9.2.1 Matching Probabilities
9.2.2 Features of coexistence

9.2.3 Extension to Multi-Component Systems

9.3 GAS STORAGE AND SEPARATION APPLICATIONS

9.3.1 Partition Functions for Adsorbed Fluids

9.3.2 Thermodynamic Properties of Adsorption

9.3.3 Environmental and Energy Applications

Chapter 10 Machine Learning Molecular Trends

10.1 LEARNING INTERMOLECULAR INTERACTIONS

10.1.1 Starting from empirical datasets

10.1.2 Training on tight-binding data

10.1.3 Neural network potentials

10.2 LEARNING PARTITION FUNCTIONS

10.2.1 Single-component systems

10.2.2 Multicomponent mixtures

10.2.3 Adsorbed Phases
10.3 LEARNING TRANSITIONS

10.3.1 Spanning Pathways

10.3.2 From Partition Functions to Reaction Coordinates

10.3.3 On-The-Fly Learning of Collective Variables

Section III Dynamic trends: motion statistics

Chapter 11 Molecular evolution and fluctuations: time-resolved statistics

11.1 COMPUTING MOLECULAR TRAJECTORIES

11.1.1 Ensemble and Time Averages Equivalency

11.1.2 Molecular Equations of Motion

11.1.3 Integration Schemes

11.2 MOLECULAR TRAJECTORIES

11.2.1 Gauss’ principle of least constraint

11.2.2 Keeping the temperature in check
11.2.3 Nos´e-Hoover Thermostat

11.3 MULTIPLE-TIME STEPS AND HYBRID SCHEMES

11.3.1 Time-splitting

11.3.2 Controlling pressure

11.3.3 Hybrid schemes

Chapter 12 Noise and information: correlation functions

12.1 MOTION AND TRANSPORT

12.1.1 Brownian Motion

12.1.2 Langevin Equation & Fluctuation-Dissipation

12.1.3 Einstein Diffusion Equation

12.2 TRANSPORT FROM CORRELATION

12.2.1 D from a Correlation Function
12.2.2 The Mori-Zwanzig approach

12.2.3 Evaluation of Transport Coefficients

12.3 RESPONSE THEORY

12.3.1 Linear response theory

12.3.2 Time-Dependent Linear Response

12.3.3 Nonlinear Response, Dynamical Stability, and Chaos

Chapter 13 External fields and agents: new communication paradigms

13.1 NONEQUILIBRIUM MOLECULAR TRAJECTORIES

13.1.1 Boundary-Driven and Synthetic Setups

13.1.2 Accounting for Heat Dissipation

13.1.3 Extracting Transport Coefficients

13.2 COMPUTING NONEQUILIBRIUM TRAJECTORIES

13.2.1 Physical Boundaries vs Periodic Boundaries
13.2.2 Nonequilibrium Definitions for Temperature

13.2.3 Transport in the Steady-State

13.3 TRANSIENT-TIME CORRELATION FUNCTION

13.3.1 Formalism

13.3.2 Bridging between Equilibrium and Nonequilibrium

13.3.3 Transport close(r) to Equilibrium

Chapter 14 Fluctuation Theorems, Molecular Machines and Emergent Behavior
in Active Matter

14.1 FLUCTUATION THEOREMS

14.1.1 Formalism

14.1.2 Negative Entropy Production Trajectories

14.1.3 Free Energy Differences

14.2 TOWARDS A NEW PHYSICS OF LIVING SYSTEMS

14.2.1 Work Relations and RNA Folding

14.2.2 Mutating, stretching, binding, and unbinding

14.2.3 Free energy calculations via steered MD

14.3 EMERGENCE IN ACTIVE MATTER

14.3.1 Dry Active Matter

14.3.2 Active Brownian Matter & MIPS

14.3.3 Entropy Production: from Active Matter to Molecular Machines

Chapter 15 Learning evolution and transport

15.1 LEARNING TRANSPORT

15.1.1 Rationale for Diffusion Learning

15.1.2 RNNs and LSTMs in Action

15.1.3 Classifying Diffusion Behaviors

15.2 LEARNING DYNAMICS

15.2.1 Learning Equations of Motion for Mesoscopic and Structured Systems

15.2.2 Learning Differential Equations

15.2.3 Data-Driven Identification of Governing Equations

15.3 LEARNING NAVIGATION

15.3.1 Adapting to the Environment

15.3.2 Identifying Navigation Strategies

15.3.3 Learning Collective Motion


Dr. Caroline Desgranges received a DEA in Physics in 2005 from the University Paul Sabatier-Toulouse III (France) and a PhD in Chemical Engineering from the University of South Carolina (USA) in 2008. She is currently a Research Assistant Professor in Physics & Applied Physics at the University of Massachusetts Lowell.

Dr. Jerome Delhommelle did his undergraduate studies at the Ecole Normale Superieure Paris-Saclay and received his PhD in Chemistry from the University of Paris-Saclay (France) in 2000. He is currently an Associate Professor in Chemistry at the University of Massachusetts Lowell.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.