Desch / Kunisch / Kappel | Control and Estimation of Distributed Parameter Systems | Buch | 978-3-0348-9800-3 | sack.de

Buch, Englisch, Band 126, 310 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 493 g

Reihe: International Series of Numerical Mathematics

Desch / Kunisch / Kappel

Control and Estimation of Distributed Parameter Systems

International Conference in Vorau, Austria, July 14-20, 1996
Softcover Nachdruck of the original 1. Auflage 1998
ISBN: 978-3-0348-9800-3
Verlag: Birkhäuser Basel

International Conference in Vorau, Austria, July 14-20, 1996

Buch, Englisch, Band 126, 310 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 493 g

Reihe: International Series of Numerical Mathematics

ISBN: 978-3-0348-9800-3
Verlag: Birkhäuser Basel


Consisting of 23 refereed contributions, this volume offers a broad and diverse view of current research in control and estimation of partial differential equations. Topics addressed include, but are not limited to - control and stability of hyperbolic systems related to elasticity, linear and nonlinear; - control and identification of nonlinear parabolic systems; - exact and approximate controllability, and observability; - Pontryagin's maximum principle and dynamic programming in PDE; and - numerics pertinent to optimal and suboptimal control problems. This volume is primarily geared toward control theorists seeking information on the latest developments in their area of expertise. It may also serve as a stimulating reader to any researcher who wants to gain an impression of activities at the forefront of a vigorously expanding area in applied mathematics.

Desch / Kunisch / Kappel Control and Estimation of Distributed Parameter Systems jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Approximation results for parameter estimation in nonlinear elastomers.- Preconditioners for Karush-Kuhn-Tucker matrices arising in the optimal control of distributed systems.- Augmented Lagrangian algorithms for state constrained optimal control problems.- A priori estimates for the approximation of a parabolic boundary control problem.- On the wellposedness of the Chaboche model.- On the behaviour of the value function of a Mayer optimal control problem along optimal trajectories.- Optimal control problem governed by semilinear elliptic equations with integral control constraints and pointwise state constraints.- Designing for optimal energy absorption II, The damped wave equation.- On the approximate controllability for higher order parabolic nonlinear equations of Cahn-Hilliard type.- Control problems for parabolic equations with state constraints and unbounded control sets.- Remarks on the controllability of some stochastic partial differential equations.- A reduced basis method for control problems governed by PDEs.- Proximal penalty method for ill-posed parabolic optimal control problems.- On the control of coupled linear systems.- On dynamic domain decomposition of controlled networks of elastic strings and joint-masses.- On a weakly damped system arising in the control of noise.- Dirichlet boundary control of parabolic systems with pointwise state constraints.- Second order optimality conditions and stability estimates for the identification of nonlinear heat transfer laws.- LQR control of shell vibrations via piezoceramic actuators.- The algebraic Riccati equation in discrete and continuous time.- The wave equation with Neuman controls: On Lions’s F-space.- On the pointwise stabilization of a string M.Tucsnak.- Exact controllability of the generalizedBoussinesq Equation.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.