E-Book, Englisch, Band 15, 205 Seiten, eBook
Deppe Discovery of Ill–Known Motifs in Time Series Data
1. Auflage 2022
ISBN: 978-3-662-64215-3
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 15, 205 Seiten, eBook
Reihe: Technologien für die intelligente Automation
ISBN: 978-3-662-64215-3
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book includes a novel motif discovery for time series, KITE (), to identify ill-known motifs transformed by affine mappings such as translation, uniform scaling, reflection, stretch, and squeeze mappings. Additionally, such motifs may be covered with noise or have variable lengths. Besides KITE’s contribution to motif discovery, new avenues for the signal and image processing domains are explored and created. The core of KITE is an invariant representation method called (ACQTWP). This wavelet transform applies to motif discovery as well as to several signal and image processing tasks. The efficiency of KITE is demonstrated with data sets from various domains and compared with state-of-the-art algorithms, where KITE yields the best outcomes.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Introduction.- Preliminaries.- General Principles of Time Series Motif Discovery.- State of the Art in Time Series Motif Discovery.- Distortion-Invariant Motif Discovery.- Evaluation.- Conclusion and Outlook.- Appendices A-D.




