Deng / Han | Harmonic Analysis on Spaces of Homogeneous Type | Buch | 978-3-540-88744-7 | sack.de

Buch, Englisch, Band 1966, 160 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 277 g

Reihe: Lecture Notes in Mathematics

Deng / Han

Harmonic Analysis on Spaces of Homogeneous Type

Buch, Englisch, Band 1966, 160 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 277 g

Reihe: Lecture Notes in Mathematics

ISBN: 978-3-540-88744-7
Verlag: Springer Berlin Heidelberg


This book could have been entitled “Analysis and Geometry.” The authors are addressing the following issue: Is it possible to perform some harmonic analysis on a set? Harmonic analysis on groups has a long tradition. Here we are given a metric set X with a (positive) Borel measure ? and we would like to construct some algorithms which in the classical setting rely on the Fourier transformation. Needless to say, the Fourier transformation does not exist on an arbitrary metric set. This endeavor is not a revolution. It is a continuation of a line of research whichwasinitiated,acenturyago,withtwofundamentalpapersthatIwould like to discuss brie?y. The ?rst paper is the doctoral dissertation of Alfred Haar, which was submitted at to University of Gottingen ¨ in July 1907. At that time it was known that the Fourier series expansion of a continuous function may diverge at a given point. Haar wanted to know if this phenomenon happens for every 2 orthonormal basis of L [0,1]. He answered this question by constructing an orthonormal basis (today known as the Haar basis) with the property that the expansion (in this basis) of any continuous function uniformly converges to that function.
Deng / Han Harmonic Analysis on Spaces of Homogeneous Type jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Calde?on-Zygmund Operator on Space of Homogeneous Type.- The Boundedness of Calderón-Zygmund Operators on Wavelet Spaces.- Wavelet Expansions on Spaces of Homogeneous Type.- Wavelets and Spaces of Functions and Distributions.- Littlewood-Paley Analysis on Non Homogeneous Spaces.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.