Demkov / Ostrovskii | Zero-Range Potentials and Their Applications in Atomic Physics | E-Book | sack.de
E-Book

E-Book, Englisch, 296 Seiten, eBook

Reihe: Physics of Atoms and Molecules

Demkov / Ostrovskii Zero-Range Potentials and Their Applications in Atomic Physics


1988
ISBN: 978-1-4684-5451-2
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 296 Seiten, eBook

Reihe: Physics of Atoms and Molecules

ISBN: 978-1-4684-5451-2
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



Demkov / Ostrovskii Zero-Range Potentials and Their Applications in Atomic Physics jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1 Basic Principles of the Zero-Range Potential Method.- 1.1 Introduction.- 1.2 Formulation of the Method.- 1.3 The One-Center Problem and Its Simple Applications.- 1.4 Separable Potentials and Scattering of Slow Electrons by Atoms.- 2 Trajectories of the Poles of the S-Matrix and Resonance Scattering.- 2.1 Preliminary Remarks.- 2.2 Trajectories of the Zeros of the Jost Function for ? = 0.- 2.3 The S-Matrix in a Two-Pole Approximation.- 2.4 The Case of ? ? 0 and Perturbation Theory for a Bound State Close to the Continuum.- 2.5 Trajectories of the Poles of the S-Matrix in the Case of ZRP and Separable Potentials.- 3 Zero-Range Potentials for Molecular Systems. Bound States.- 3.1 Many-Center Problems without External Fields.- 3.2 Potential Curves for a Two-Center System and Some Applications.- 3.3 Analytic Properties of the Potential Curves and Trajectories of the Poles of the S-Matrix.- 3.4 Perturbation Theory in the Presence of an External Electric Field.- 3.5 Perturbation Theory in the Presence of an External Magnetic Field.- 3.6 Solution of the Schrödinger Equation with the Help of ZRPs.- 4 Scattering by a System of Zero-Range Potentials and the Partial Wave Method for a Nonspherical Scatterer.- 4.1 The Partial Wave Method.- 4.2 Behavior of the Phases at Low Energy.- 4.3 The Variational Principle.- 4.4 Scattering by a System of ZRPs.- 4.5 ZRPs in the Theory of Multiple Scattering.- 5 Zero-Range Potentials in Multi-Channel Problems.- 5.1 Zero-Range Potentials for a Many-Component Wavefunction.- 5.2 Singlet-Triplet Splitting and Cross Sections for Elastic and Inelastic Scattering.- 5.3 Energy Terms of the e + H2 System and Trajectories of the Poles of the S-Matrix for a Two-Channel Problem.- 5.4 Electron Scattering by Molecules in the Separable PotentialApproximation.- 6 Motion of a Particle in a Periodic Field of Zero-Range Potentials.- 6.1 One-Dimensional Lattice in a Three-Dimensional Space. Bound States.- 6.2 Electron Scattering by Long Linear Molecules.- 6.3 Two-Dimensional Lattice in Three-Dimensional Space.- 6.4 Three-Dimensional Lattice and the Method of Ewald.- 7 Weakly Bound Systems in Electric and Magnetic Fields.- 7.1 Weakly Bound Systems in a Homogeneous Electric Field.- 7.2 Weakly Bound Systems in a Homogeneous Magnetic Field.- 7.3 Weakly Bound Systems in Crossed Electric and Magnetic Fields.- 7.4 A Combination of ZRPs and a Coulomb Field.- 8 Electron Detachment in Slow Collisions Between a Negative Ion and an Atom.- 8.1 ZRPs in Time-Dependent Quantum Mechanical Problems.- 8.2 Linear Approximation in Detachment Theory.- 8.3 Account of the Finite Size of the Colliding System.- 8.4 Production of Negative Ions in Three-Body Collisions.- 9 Time-Dependent Quantum Mechanical Problems Solvable by Contour Integration.- 9.1 General Time-Dependent Problems Solvable by Contour Integration.- 9.2 Adiabatic Approximation and Trajectories of the Poles of the S-Matrix.- 9.3 Ionization in Slow Atomic Collisions.- 10 Nonlinear Approximations in the Theory of Electron Detachment.- 10.1 Nonlinear Problems Solvable by Contour Integration. Sudden Approximation.- 10.2 Quadratic Approximation in the Theory of Electron Detachment.- 10.3 Quadratic Approximation (General Case).- 11 Time-Independent Quantum Mechanical Problems.- 11.1 Account of the Quantal Motion of the Nuclei in Detachment Theory.- 11.2 Time-Independent Quantum Mechanical Problems Solvable by Contour Integration.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.