E-Book, Englisch, Band 44, 409 Seiten
An Approach via Dessins d'Enfants
E-Book, Englisch, Band 44, 409 Seiten
Reihe: De Gruyter Studies in MathematicsISSN
ISBN: 978-3-11-025842-4
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Zielgruppe
Researchers, Lecturers, and Graduate Students in Mathematics; Academic Libraries
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1;Preface;7
2;I Skeletons and dessins;17
2.1;1 Graphs;19
2.1.1;1.1 Graphs and trees;19
2.1.1.1;1.1.1 Graphs;19
2.1.1.2;1.1.2 Trees;22
2.1.1.3;1.1.3 Dynkin diagrams;23
2.1.2;1.2 Skeletons;25
2.1.2.1;1.2.1 Ribbon graphs;25
2.1.2.2;1.2.2 Regions;28
2.1.2.3;1.2.3 The fundamental group;32
2.1.2.4;1.2.4 First applications;38
2.1.3;1.3 Pseudo-trees;42
2.1.3.1;1.3.1 Admissible trees;42
2.1.3.2;1.3.2 The counts;47
2.1.3.3;1.3.3 The associated lattice;52
2.2;2 The groups G and B3;57
2.2.1;2.1 The modular group G := PSL(2, Z);57
2.2.1.1;2.1.1 The presentation of G;57
2.2.1.2;2.1.2 Subgroups;63
2.2.2;2.2 The braid group B3;66
2.2.2.1;2.2.1 Artin’s braid groups Bn;66
2.2.2.2;2.2.2 The Burau representation;70
2.2.2.3;2.2.3 The group B3;73
2.3;3 Trigonal curves and elliptic surfaces;79
2.3.1;3.1 Trigonal curves;79
2.3.1.1;3.1.1 Basic definitions and properties;79
2.3.1.2;3.1.2 Singular fibers;87
2.3.1.3;3.1.3 Special geometric structures;92
2.3.2;3.2 Elliptic surfaces;95
2.3.2.1;3.2.1 The local theory;95
2.3.2.2;3.2.2 Compact elliptic surfaces;99
2.3.3;3.3 Real structures;106
2.3.3.1;3.3.1 Real varieties;107
2.3.3.2;3.3.2 Real trigonal curves and real elliptic surfaces;112
2.3.3.3;3.3.3 Lefschetz fibrations;117
2.4;4 Dessins;125
2.4.1;4.1 Dessins;125
2.4.1.1;4.1.1 Trichotomic graphs;125
2.4.1.2;4.1.2 Deformations;131
2.4.2;4.2 Trigonal curves via dessins;134
2.4.2.1;4.2.1 The correspondence theorems;134
2.4.2.2;4.2.2 Complex curves;136
2.4.2.3;4.2.3 Generic real curves;147
2.4.3;4.3 First applications;153
2.4.3.1;4.3.1 Ribbon curves;153
2.4.3.2;4.3.2 Elliptic Lefschetz fibrations revisited;158
2.5;5 The braid monodromy;162
2.5.1;5.1 The Zariski–van Kampen theorem;162
2.5.1.1;5.1.1 The monodromy of a proper n-gonal curve;162
2.5.1.2;5.1.2 The fundamental groups;168
2.5.1.3;5.1.3 Improper curves: slopes;174
2.5.2;5.2 The case of trigonal curves;180
2.5.2.1;5.2.1 Monodromy via skeletons;180
2.5.2.2;5.2.2 Slopes;186
2.5.2.3;5.2.3 The strategy;189
2.5.3;5.3 Universal curves;193
2.5.3.1;5.3.1 Universal curves;193
2.5.3.2;5.3.2 The irreducibility criteria;195
3;II Applications;197
3.1;6 The metabelian invariants;199
3.1.1;6.1 Dihedral quotients;199
3.1.1.1;6.1.1 Uniform dihedral quotients;199
3.1.1.2;6.1.2 Geometric implications;203
3.1.2;6.2 The Alexander module;206
3.1.2.1;6.2.1 Statements;206
3.1.2.2;6.2.2 Proof of Theorem 6.16: the case N . 7;209
3.1.2.3;6.2.3 Congruence subgroups (the case N . 5);212
3.1.2.4;6.2.4 The parabolic case N = 6;215
3.2;7 A few simple computations;219
3.2.1;7.1 Trigonal curves in .2;219
3.2.1.1;7.1.1 Proper curves in .2;219
3.2.1.2;7.1.2 Perturbations of simple singularities;223
3.2.2;7.2 Sextics with a non-simple triple point;229
3.2.2.1;7.2.1 A gentle introduction to plane sextics;229
3.2.2.2;7.2.2 Classification and fundamental groups;236
3.2.2.3;7.2.3 A summary of further results;237
3.2.3;7.3 Plane quintics;240
3.3;8 Fundamental groups of plane sextics;243
3.3.1;8.1 Statements;243
3.3.1.1;8.1.1 Principal results;243
3.3.1.2;8.1.2 Beginning of the proof;244
3.3.2;8.2 A distinguished point of type E;247
3.3.2.1;8.2.1 A point of type E8;248
3.3.2.2;8.2.2 A point of type E7;254
3.3.2.3;8.2.3 A point of type E6;260
3.3.3;8.3 A distinguished point of type D;275
3.3.3.1;8.3.1 A point of type Dp, p . 6;275
3.3.3.2;8.3.2 A point of type D5;279
3.3.3.3;8.3.3 A point of type D4;285
3.4;9 The transcendental lattice;291
3.4.1;9.1 Extremal elliptic surfaces without exceptional fibers;291
3.4.1.1;9.1.1 The tripod calculus;291
3.4.1.2;9.1.2 Proofs and further observations;293
3.4.2;9.2 Generalizations and examples;297
3.4.2.1;9.2.1 A computation via the homological invariant;297
3.4.2.2;9.2.2 An example;300
3.5;10 Monodromy factorizations;304
3.5.1;10.1 Hurwitz equivalence;304
3.5.1.1;10.1.1 Statement of the problem;304
3.5.1.2;10.1.2 Fn-valued factorizations;307
3.5.1.3;10.1.3 Sn-valued factorizations;308
3.5.2;10.2 Factorizations in G;313
3.5.2.1;10.2.1 Exponential examples;313
3.5.2.2;10.2.2 2-factorizations;317
3.5.2.3;10.2.3 The transcendental lattice;323
3.5.2.4;10.2.4 2-factorizations via matrices;329
3.5.3;10.3 Geometric applications;332
3.5.3.1;10.3.1 Extremal elliptic surfaces;332
3.5.3.2;10.3.2 Ribbon curves via skeletons;334
3.5.3.3;10.3.3 Maximal Lefschetz fibrations are algebraic;339
4;Appendices;343
4.1;A An algebraic complement;345
4.1.1;A.1 Integral lattices;345
4.1.1.1;A.1.1 Nikulin’s theory of discriminant forms;345
4.1.1.2;A.1.2 Definite lattices;347
4.1.2;A.2 Quotient groups;351
4.1.2.1;A.2.1 Zariski quotients;351
4.1.2.2;A.2.2 Auxiliary lemmas;352
4.1.2.3;A.2.3 Alexander module and dihedral quotients;353
4.2;B Bigonal curves in .d;356
4.2.1;B.1 Bigonal curves in .d;356
4.2.2;B.2 Plane quartics, quintics, and sextics;360
4.3;C Computer implementations;362
4.3.1;C.1 GAP implementations;362
4.3.1.1;C.1.1 Manipulating skeletons in GAP;362
4.3.1.2;C.1.2 Proof of Theorem 6.16;368
4.4;D Definitions and notation;375
4.4.1;D.1 Common notation;375
4.4.1.1;D.1.1 Groups and group actions;375
4.4.1.2;D.1.2 Topology and homotopy theory;376
4.4.1.3;D.1.3 Algebraic geometry;378
4.4.1.4;D.1.4 Miscellaneous notation;380
4.4.2;D.2 Index of notation;381
5;Bibliography;385
6;Index of figures;395
7;Index of tables;398
8;Index;399