Deepa / Sivanandam | Introduction to Genetic Algorithms | Buch | 978-3-642-09224-4 | sack.de

Buch, Englisch, 442 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 698 g

Deepa / Sivanandam

Introduction to Genetic Algorithms

Buch, Englisch, 442 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 698 g

ISBN: 978-3-642-09224-4
Verlag: Springer


Theoriginofevolutionaryalgorithmswasanattempttomimicsomeoftheprocesses taking place in natural evolution. Although the details of biological evolution are not completely understood (even nowadays), there exist some points supported by strong experimental evidence: • Evolution is a process operating over chromosomes rather than over organisms. The former are organic tools encoding the structure of a living being, i.e., a cr- ture is “built” decoding a set of chromosomes. • Natural selection is the mechanism that relates chromosomes with the ef ciency of the entity they represent, thus allowing that ef cient organism which is we- adapted to the environment to reproduce more often than those which are not. • The evolutionary process takes place during the reproduction stage. There exists a large number of reproductive mechanisms in Nature. Most common ones are mutation (that causes the chromosomes of offspring to be different to those of the parents) and recombination (that combines the chromosomes of the parents to produce the offspring). Based upon the features above, the three mentioned models of evolutionary c- puting were independently (and almost simultaneously) developed.
Deepa / Sivanandam Introduction to Genetic Algorithms jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Evolutionary Computation.- Genetic Algorithms.- Terminologies and Operators of GA.- Advanced Operators and Techniques in Genetic Algorithm.- Classification of Genetic Algorithm.- Genetic Programming.- Genetic Algorithm Optimization Problems.- Genetic Algorithm Implementation Using Matlab.- Genetic Algorithm Optimization in C/C++.- Applications of Genetic Algorithms.- to Particle Swarm Optimization and Ant Colony Optimization.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.