E-Book, Englisch, 556 Seiten, Web PDF
Reihe: IFAC Symposia Series
DeBra / Gottzein Automatic Control in Aerospace 1992
1. Auflage 2017
ISBN: 978-1-4832-9874-0
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Selected Papers from the 12th IFAC Symposium, Ottobrunn, Germany, 7 - 11 September 1992
E-Book, Englisch, 556 Seiten, Web PDF
Reihe: IFAC Symposia Series
ISBN: 978-1-4832-9874-0
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Space vehicles have become increasingly complex in recent years, and the number of missions has multiplied as a result of extending frontiers in the exploration of our planetary system and the universe beyond. The advancement of automatic control in aerospace reflects these developments. Key areas covered in these proceedings include: the size and complexity of spacecrafts and the increasingly stringent performance requirements to be fulfilled in a harsh and unpredictable environment; the merger of space vehicles and airplanes into space planes to launch and retrieve payloads by reusable winged vehicles; and the demand to increase space automation and autonomy to reduce human involvement as much as possible in manned, man-tended and unmanned missions. This volume covers not only the newly evolving key technologies but also the classical issues of guidance, navigation and control.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Automatic Control in Aerospace 1992: Selected Papers From the 12th IFAC Symposium, Ottobrunn, Germany, 7-11 September 1992;4
3;Copyright Page;5
4;Table of Contents;10
5;IFAC SYMPOSIUM ON AUTOMATIC CONTROL INAEROSPACE 1992;6
6;FOREWORD;8
7;PRINCIPAL TOPICS;9
8;TOWARDS A FULLY AUTOMATIC FLIGHT FORPASSENGER AIR CRAFT AND SPACE AND EARTH REFERENCE SYSTEMS;16
9;CHAPTER 1. PARALLEL PROCESSING ARCHITECTURES FOR AEROSPACE APPLICATIONS;18
9.1;PROCESSING DEMANDS IN AIRCRAFT;18
9.2;CONTROL LAW COMPLEXITY;19
9.3;CURRENT CONCERNS OF AVIONICS SYSTEMS DEVELOPERS;19
9.4;PARALLEL PROCESSING;19
9.5;SOFTWARE PARTITIONING AND TASK ALLOCATION STRATEGIES;20
9.6;EXECUTION TIME REDUCTION;20
9.7;FAULT TOLERANCE;20
9.8;DISTRIBUTED ARCHITECTURES AND NETWORK TOPOLOGIES;21
9.9;COMMUNICATION TECHNIQUES;22
9.10;SMART ACTUATION;22
9.11;SMART STRUCTURES;23
9.12;THE FUTURE-NEURAL NETWORKS;23
9.13;MODULAR AVIONICS AND INTEGRATION;24
9.14;CONCLUSION;25
9.15;ACKNOWLEDGEMENTS;25
9.16;REFERENCES;25
10;CHAPTER 2. GNC AND AUTOMATIC CONTROL SYSTEM SDEVELOPMENT, VALIDATION AND VERIFICATION;28
10.1;1 - INTRODUCTION;28
10.2;2 - AOCS TEST SET-UPS;28
10.3;3 - KEY ELEMENTS OF AOCS TESTS;33
10.4;4- DEVELOPMENT AND VALIDATION LOGICS AOCS;35
10.5;5 - TN-ORBIT EXPERIENCE RETURN;37
10.6;6-FUTURE TRENDS;38
11;CHAPRER 3. NEW DEVELOPMENTS IN AEROSPACE GUIDANCE AND CONTROL: KNOWLEDGE-BASED PILOT ASSISTANCE;40
11.1;1. INTRODUCTION;40
11.2;2. FUNCTIONAL MODULES OF BASELINE STRUCTURE;40
11.3;3. KNOWLEDGE REPRESENTATION METHODS AND TECHNIQUES;42
11.4;4. STRUCTURE OF CASSY;43
11.5;5. EXPERIMENTAL TEST RESULTS;44
11.6;6. CONCLUDING REMARKS;45
11.7;7. REFERENCES;45
12;CHAPTER 4. SPACE ROBOTICS AND MANIPULATORS: LESSONS LEARNED FROM THE PAST AND FUTURE MISSIONS AND SYSTEMS;50
12.1;INTRODUCTION;50
12.2;ROBOTS AND MANIPULATORS;50
12.3;LESSON LEARN FROM THE PAST;54
12.4;FUTURE MISSIONS AND SYSTEMS;56
12.5;CONCLUSIONS;56
12.6;REFERENCES;58
13;CHAPTER 5. COMMAND AND CONTROL FOR INTELLIGENT AUTONOMOUS VEHICLES: AN APPROACH EMPHASISING INTEROPERABILITY;60
13.1;INTRODUCTION;60
13.2;COMMAND AND CONTROL FOR AUTONOMOUS SYSTEMS;61
13.3;INTELLIGENT CONTROL ARCHITECTURES;62
13.4;INTELLIGENT CONTROL PROCESSES;63
13.5;IAV's MANAGEMENT INFRASTRUCTURES;64
13.6;POLYMORPHIC ROBOT COMMAND LANGUAGE;67
13.7;OBJECT ORIENTATION IN ROBOTICS;67
13.8;ACKNOWLEDGEMENT;68
13.9;REFERENCES;68
14;CHAPTER 6. DYNAMICS AND CONTROL OF FLEXIBLE AEROSPACE STRUCTURES;74
14.1;INTRODUCTION;74
14.2;REQUIREMENTS AND PERFORMANCE;75
14.3;MODEL DEVELOPMENT;75
14.4;CONTROL SYSTEM DESIGN AND DEVELOPMENT;77
14.5;SIMULATIONS AND THEIR USE;79
14.6;ORBITAL OPERATIONS AND USE OF DATA;80
14.7;CONCLUSIONS;81
14.8;REFERENCES;81
15;CHAPTER 7. CONTROL CHALLENGES FROM SPACE AND GROUND BASED ASTRONOMICAL TELESCOPES;84
15.1;1.0 HIGH-PERFORMANCE ASTRONOMICAL INSTRUMENTS;84
15.2;2.0 MODELING CONTROLLED OPTICAL SYSTEMS;87
15.3;3.0 SEGMENTED MIRROR FIGURE CONTROL EXAMPLE;90
15.4;4.0 CONCLUSION;91
15.5;5.0 ACKNOWLEDGEMENT;92
15.6;6.0 REFERENCES;92
16;CHAPTER 8. TRAJECTORY OPTIMIZATION TECHNIQUES AND SOFTWARE IMPLEMENTATION;94
16.1;INTRODUCTION;94
16.2;SPECIAL SOFTWARE FEATURES AND DATA STRUCTURE;96
16.3;ADVANCED USER INTERFACE (UI);97
16.4;EXAMPLE: ASCENT of a SSTO;98
16.5;CONCLUSIONS;98
16.6;ACKNOWLEDGEMENT;99
16.7;REFERENCES;99
17;CHAPTER 9. PROBLEMS IN CONTROL SYSTEM DESIGN FOR HYPERSONIC VEHICLES;106
17.1;Introduction;106
17.2;Aerodynamics;107
17.3;SCRAMjet Propulsion;108
17.4;Propulsion-Aerodynamic Coupling;110
17.5;Structural Dynamic and Aeroelastic Effects;111
17.6;Further Dynamics and Control Issues;112
17.7;Conclusions;113
17.8;Acknowledgments;113
17.9;References;113
18;CHAPTER 10. DEVELOPMENT OF A ROBUST FLIGHT CONTROL LAW FOR A VSTOL AIRCRAFT;114
18.1;1 INTRODUCTION;114
18.2;2 FLIGHT CONTROL MODES;114
18.3;3 INCEPTOR SPECIFICATION;115
18.4;4 FEEDBACK VARIABLES;116
18.5;5 MULTIVARIABLE LOOP-SHAPING;116
18.6;6 EXAMPLE LINEAR DESIGN;116
18.7;7 NON-LINEAR SIMULATION;117
18.8;8 CONCLUSIONS;117
18.9;Acknowledgements;118
18.10;References;118
19;CHAPTER 11. APPLICATION OF RESTRUCTURABLE FLIGHT CONTROL SYSTEM TO AN AIRLINER;120
19.1;INTRODUCTION;120
19.2;DIGITAL RFCS;121
19.3;FEEDFORWARD CONTROL USING SLOW EFFECTORS;121
19.4;SIMULATION;122
19.5;CONCLUSION;123
19.6;REFERENCES;124
20;CHAPTER 12. USE OF OPTIMAL INTEGRAL CONTROL TO RESTORE TRIM IN A RECONFIGURABLE FLIGHT CONTROL SYSTEM;126
20.1;ABSTRACT;126
20.2;KEYWORDS;126
20.3;INTRODUCTION;127
20.4;AIRCRAFT DYNAMICS;127
20.5;RECONFIGURABLE FLIGHT CONTROL SYSTEMS;128
20.6;CONCLUSIONS;129
20.7;ACKNOWLEDGEMENTS;129
20.8;REFERENCES;129
21;CHAPTER 13. ADAPTIVE ON-LINE SYSTEM IDENTIFICATION OF AEROSPACE STRUCTURES USING MX FILTERS;132
21.1;INTRODUCTION;132
21.2;THE NEW METHOD: ON-LINE SYSTEM IDENTIFICATION USING MX FILTERS;133
21.3;EXPERIMENTS: ON-LINE IDENTIFICATION OF A TIME-VARYING STRUCTURE;135
21.4;CONCLUDING REMARKS AND FURTHER APPLICATIONS;137
21.5;ACKNOWLEDGEMENTS;137
21.6;REFERENCES;137
22;CHAPTER 14. ONLINE GUIDANCE AND CONTROL OF A SPACECRAFT FOR AN AEROASSISTED ORBIT TRANSFER;138
22.1;INTRODUCTION;138
22.2;MODEL EQUATIONS;138
22.3;MOTION OF THE CENTER OF MASS;138
22.4;GUIDANCE;139
22.5;TRAJECTORY TRACKING;140
22.6;ATTITUDE CONTROL : GAIN SCHEDULING;141
22.7;SIMULATION RESULTS;142
22.8;SENSITIVITY TO THE INITIAL PATH ANGLE;143
22.9;ROBUSTNESS W.R.T. DENSITY DEVIATIONS;143
22.10;CONCLUSION;143
22.11;ACKNOWLEDGMENT;143
22.12;REFERENCES;143
23;CHAPTER 15.
SMART STRUCTURES AND MATERIALS SYSTEMS;144
23.1;1. INTRODUCTION;144
23.2;2. THE CONCEPT;145
23.3;3. THE ENABLING, CONTRIBUTORY FUNCTIONAL ELEMENTS;145
23.4;4. USES & BENEFITS OF SMART STRUCTURES AND MATERIALS;147
23.5;5. OVERVIEW OF WORLD-WIDE ACTIVITY;147
23.6;6. AEROSPACE APPLICATIONS FOR SMART STRUCTURES;148
23.7;7. IMPLICATIONS OF SMART STRUCTURES TECHNOLOGY;149
23.8;7. CONCLUDING REMARKS;150
23.9;8. BIBLIOGRAPHY;150
24;CHAPTER 16. ATTITUDE CONTROL SYSTEM OF THE AUTONOMOUS SPACECRAFT "MARS", DEVELOPMENT, GROUND VALIDATION AND VERIFICATION, FLIGHT CONTROL OPERATION;154
24.1;INTRODUCTION;154
24.2;OPTIONS OF THE CONTROL SYSTEM CONCEPTION;155
24.3;ACS PHASES OF OPERATION;155
24.4;GROUND TESTS;157
24.5;FLIGHT CONTROL;158
24.6;CONCLUSION;159
25;CHAPTER 17. ROSAT FLIGHT EXPERIENCE WITH H/W-DEGRADATIONS AND S/W-RECOVERY MEASURES;162
25.1;INTRODUCTION;162
25.2;EVENTS IN THE ROSAT LIFETIME;162
25.3;IN-ORBIT REPROGRAMMING OF THE AMCS-S/W;163
25.4;S/W-IMPLEMENTATION ASPECTS. GROUND TEST AND INORBITE XPERIENCE;165
25.5;ROSAT POINTING MODE OPERATION WITH LESS THAN 3 GYROS;166
25.6;ACKNOWLEDGEMENT;167
25.7;REFERENCES;167
26;CHAPTER 18. VALIDATION APPROACH FOR THE MODULAR ATTITUDE DETERMINATION CONTROL SUBSYSTEM IMPLEMENTED ON TOPEX/POSEIDON (T/P);168
26.1;INTRODUCTION;168
26.2;MACS MODULE DESCRIPTION;168
26.3;APPLICATION OF THE MACS TO T/P;169
26.4;T / P SATELLITE DESCRIPTION;170
26.5;T / P MACS REQUIREMENTS;170
26.6;FUNCTIONAL REQUIREMENTS;170
26.7;PERFORMANCE REQUIREMENTS;170
26.8;GROUND VERIFICATION PROCESS;171
26.9;REQUIREMENTS OVERVIEW;171
26.10;VERIFICATION APPROACH;171
26.11;HARDWARE VERIFICATION;171
26.12;SOFTWARE VERIFICATION;173
26.13;ANALYSIS AND SIMULATION;174
26.14;FLIGHT PERFORMANCE ISSUES;174
26.15;CONCLUSION;174
26.16;REFERENCES;175
27;CHAPTER 19. ADVANCED ATTITUDE- AND ORBIT CONTROL CONCEPTS FOR 3-AXIS-STABILIZED COMMUNICATION AND APPLICATION SATELLITES;176
27.1;1. INTRODUCTION;176
27.2;2. ADVANCED AOCS REQUIREMENTS;178
27.3;3. DESIGN APPROACH;179
27.4;A. S/C CONFIGURATION AND MISSION CONDITIONS;182
27.5;5. AOCS EQUIPMENT CHARACTERISTICS;183
27.6;6. ATTITUDE CONTROL IN TRANSFER ORBIT;188
27.7;7. ATTITUDE AND ORBIT CONTROL IN GEOSTATIONARY ORBIT;192
27.8;8. SAFE MODES;196
27.9;9. FAILURE DETECTION, ISOLATION & RECOVERY;196
27.10;10. SUMMARY;197
27.11;11. ACKNOWLEDGMENT;197
27.12;12. REFERENCES;198
28;CHAPTER 20. DISCRETE FREQUENCY DISTURBANCE REJECTION IN MULTIVARIABLE DIGITAL CONTROLLERS;200
28.1;1. Introduction;200
28.2;2. Frequency Response in Sampled Data Controllers;200
28.3;3. Continuous LQR/LQG Controller with Disturbance Rejection;202
28.4;4. Discrete LQR/LQG Design for Disturbance Rejection;203
28.5;5. Example;205
28.6;6. Conclusions;205
28.7;7. Acknowledgments;205
28.8;8. References;205
29;CHAPTER 21.
A REVIEW OF CHINESE SPACECRAFT CONTROL;206
29.1;PREFACE;206
29.2;SPACECRAFT CONTROL IN MEDIUM AND LOW ALTITUDE ORBIT;206
29.3;GEOSTATIONARY SATELLITE CONTROL [7];208
29.4;CHARACTERISTICS OF CHINESE SPACECRAFT CONTROL SYSTEM DEVELOPMENT;209
29.5;CONCLUSION;209
29.6;REFERENCE;210
30;CHAPTER 22.
ROBUST ATTITUDE CONTROL USING A CMG SYSTEMAND AN EXPERIMENT WITH A SIMULATION PLATFORM;214
30.1;INTRODUCTION;214
30.2;SIMULATION PLATFORM;215
30.3;ROBUST ATTITUDE CONTROL;215
30.4;GLOBAL SINGULARITY AVOIDANCE OF CMG;218
30.5;CONCLUSION;219
30.6;REFERENCES;219
31;CHAPTER 23. SPACECRAFT CONTROL ELECTRONICS - AN AUTOMATED MICROPROCESSOR BASED SPACECRAFT SYSTEM CONTROL FOR INTELSAT VII SATELLITES;220
31.1;ABSTRACT;220
31.2;INTRODUCTION;220
31.3;SCE ARCHITECTURE;220
31.4;SCE HARDWARE DESIGN;221
31.5;DCU HARDWARE;221
31.6;SCE SOFTWARE DESIGN;221
31.7;SCE FUNCTIONS;222
31.8;COMMAND PROCESSING;223
31.9;ATTITUDE DETERMINATION and CONTROL FUNCTIONS;223
31.10;THERMAL CONTROL;226
31.11;BATTERY MANAGEMENT;226
31.12;ANTENNA POSITION AND CONTROL;227
31.13;SCE TESTING;227
31.14;CONCLUSION;228
31.15;ACKNOWLEDGMENTS;229
32;CHAPTER 24. A RE-ENTRY CAPSULE CONTROL SYSTEM DESIGN FOR MICROGRAVITY EXPERIMENTS;238
32.1;INTRODUCTION;238
32.2;REFERENCE FRAMES AND CONFIGURATION OF CARINA CAPSULE;238
32.3;PHASE 3: OPERATIVE ATTITUDE ACQUISITION;240
32.4;PHASE 4: OPERATIVE PHASE;241
32.5;CONCLUSIONS;242
32.6;REFERENCES;243
33;CHAPTER 25.
ARIANE 5 DYNAMICS AND CONTROL;244
33.1;1 Introduction;244
33.2;2 Dynamic Analyses;244
33.3;3 Control Algorithm;248
34;CHAPTER 26. OPTIMAL DIGITAL AUTOPILOT FOR SATELLITE LAUNCH VEHICLES DURING ATMOSPHERIC PHASE;252
34.1;1. INTRODUCTION;252
34.2;2. MATHEMATICAL MODELING;252
34.3;3. OPTIMAL CONTROLLER DESIGN;253
34.4;4 CONCLUSIONS;255
34.5;REFERENCES;255
35;CHAPTER 27. GRAVITY PROBE-B, A GYRO TEST OF GENERAL RELATIVITY IN A SATELLITE;258
35.1;INTRODUCTION;258
35.2;DIRECTIONALITY IN SPACE-TIME;258
35.3;A COHERENT FLIGHT PROGRAM;261
36;CHAPTER 28. ORBIT CONTROL OF A RECALCITRANT SATELLITE;262
36.1;SHORT HISTORY OF THE OLYMPUS MISSION IN ORBIT;262
36.2; STATION KEEPING PRINCIPLES AND OPERATIONL CONSTRAINTS;263
36.3;CONCLUSIONS;267
36.4;REFERENCES;267
37;CHAPTER 29.
FUZZY LOGIC FOR CONTROL SYSTEMS;268
37.1;INTRODUCTION;268
37.2;FUZZY CONTROL;268
37.3;RESULTS OF FIZZY CONTROL;269
37.4;LESSONS LEARNED FROM APPLICATIONS;269
37.5;CONCLUSION;270
37.6;REFERENCES;270
38;CHAPTER 30. USE OF AN EXPERT SYSTEM IN AUTONOMOUS ORBIT CONTROL;274
38.1;INTRODUCTION;274
38.2;ORBIT DETERMINATION;275
38.3;AUTOMATION OF FUNCTIONS;275
38.4;ROLE OF THE EXPERT SYSTEM;276
38.5;ESIOD;277
38.6;CONCLUSIONS;279
38.7;REFERENCES;279
39;CHAPTER 31.
THE UK MISSION MANAGEMENT AID PROJECT;280
39.1;INTRODUCTION;280
39.2;INTEGRATION OF THE MMA WITH FUTURE AIRCRAFT;281
39.3;OPERATION OF THE MMA;281
39.4;ARCHITECTURE OF THE MMA;281
39.5;MAN-MACHINE INTERFACE;285
39.6;CONCLUDING REMARKS;285
39.7;BIBLIOGRAPHY;285
40;CHAPTER 32. INFERRING OPERATOR INTENT AS A BASIS FOR AIDING IN MAN-MACHINE SYSTEMS;286
40.1;WHY MODEL INTENTIONS?;286
40.2;USING THE INTENT MODEL FOR AIDING;287
40.3;DESIGN OF THE INTENT INTERPRETER;288
40.4;RECENT PROGRESS;289
40.5;CONCLUSIONS;291
40.6;REFERENCES;291
41;CHAPTER 33.
AI-DEMONSTRATORS FOR THE ROSAT AND D2-MISSIONS;292
41.1;1. INTRODUCTION;292
41.2;2. TIKON;293
41.3;3. COMPASS;294
42;CHAPTER 34. ADVANCED CONTROL SYSTEM FEATURES OF THE SPACE STATION REMOTE MANIPULATOR SYSTEM;296
42.1;INTRODUCTION;296
42.2;SPACE STATION REMOTE MANIPULATOR SYSTEM (SSRMS);297
42.3;SSRMS CONTROL SYSTEMS;297
42.4;CONCLUSIONS;299
42.5;ACKNOWLEDGEMENTS;299
42.6;REFERENCES;299
43;CHAPTER 35. EFFICIENT ADAPTIVE CONTROL OF A TWO-ARMED FREE-FLYING ROBOT;304
43.1;INTRODUCTION;304
43.2;THE ADAPTIVECONTROLLER;305
43.3;CONCLUSIONS;308
43.4;ACKNOWLEDGEMENTS;308
43.5;REFERENCES;308
44;CHAPTER 36. DYNAMIC CONTROL OF SPACE MANIPULATORS HOLDING FLEXIBLE PAYLOADS: ANALYSIS AND EXPERIMENTAL VALIDATION IN THE ONE D.O.F. CASE;310
44.1;Introduction;310
44.2;1 Control design;311
44.3;2 Closed loop behavior with a flexible payload;312
44.4;3 Linear Quadratic control;314
44.5;4 Experimental validation;315
44.6;5 Conclusions;315
44.7;References;316
45;CHAPTER 37. KNOWLEDGE BASED CONTROL WITH 3D VISION FOR AUTONOMOUS ROBOTIC TASKS;318
45.1;INTRODUCTION;318
45.2;BASELINE OF EXAMINER II;318
45.3;SYSTEM OVERVIEW;319
45.4;THE KNOWLEDGE BASE;321
45.5;SENSOR INFORMATION PROCESSING;322
45.6;CONCLUSION;323
45.7;REFERENCES;323
46;CHAPTER 38. SHARED FORCE/POSITION CONTROL FOR REDUNDANT ROBOT MANIPULATORS;324
46.1;Introduction;324
46.2;System Description;325
46.3;Position Control;325
46.4;Force Control;326
46.5;Shared Force/Position Control;327
46.6;Computer Simulation;327
46.7;Conclusions;327
46.8;References;328
47;CHAPTER 39. ADAPTIVE AND EVOLUTIONARY ROBOTICS - A NEW ARCHITECTURE FOR LEARING-BASED AUTONOMOUS SPACE ROBOT ;330
47.1;INTRODUCTION;330
47.2;LEARNING-BASED ROBOT CONTROL ARCHITECTURE;331
47.3;LABORATORY EXPERIMENT OF BLOCK CONSTRUCTION TASKS;332
47.4;RESULTS OF LABORATORY EXPERIMENTS;334
47.5;CONCLUSIONS;335
47.6;REFERENCES;335
48;CHAPTER 40. TASK-LEVEL PROGRAMMING WITH COLLISION AVOIDANCE FOR AUTONOMOUS SPACE ROBOTS;336
48.1;INTRODUCTION;336
48.2;SYSTEM DESIGN;336
48.3;ACKNOWLEDGEMENT;341
48.4;REFERENCES;341
48.5;CONCLUSION;341
49;CHAPTER 41.
MODELLING AND CONTROL OF A HERA JOINT;342
49.1;INTRODUCTION;342
49.2;MODELLING;342
49.3;CONTROL;345
49.4;CONCLUSIONS;347
49.5;REFERENCES;347
50; DEVELOPMENT OF AN AUTONOMOUS ONBOARD CONTROL SYSTEM FOR RENDEZVOUS AND DOCKING;348
50.1;1 - INTRODUCTION;348
50.2;2 - SCOPE OF ACTIVITIES IN THE RVD-PDP;349
50.3;3 -THE REFERENCE RVD SCENARIOS;349
50.4;4 - OVERALL RENDEZVOUS STRATEGY;350
50.5;5 - THE ONBOARD RVD CONTROL SYSTEM;350
50.6;6 - THE RV CONTROL SOFTWARE;350
50.7;7 - DEVELOPMENTS AND TESTS;351
50.8;8 CONCLUSIONS;355
50.9;REFERENCES;355
51;CHAPTER 43. EVALUATION OF AUTONOMOUS GNC STRATEGIES FOR THE ROSETTA INTERPLANETARY MISSION;356
51.1;ABSTRACT;356
51.2;1 INTRODUCTION;356
51.3;2 DEVELOPED SOFTWARE TOOL AND SIMULATED MODELS;358
51.4;3 ATTITUDE AND ARTICULATION CONTROL SYSTEM PERFORMANCE ANALYSIS;360
51.5;4 AUTONOMOUS GNC CONCEPTS FOR THE DESCENT PHASE;364
51.6;5 TOUCHDOWN CONTROL;368
51.7;6 CONCLUSIONS;370
51.8;REFERENCES;370
52;CHAPTER 44. AUTONOMOUS ON-COMET OPERATIONS ASPECTS OF THE ROSETTA MISSION;372
52.1;INTRODUCTION;372
52.2;SCENARIO OF THE ON-COMET PHASE;373
52.3;COMETARY SOIL MODEL;374
52.4;EFFECTS OF PHYSICAL AND ENGINEERING PARAMETERS;374
52.5;COMPUTER SIMULATION FRAMEWORK;375
52.6;ADAPTIVE CONTROL CONCEPT FOR CORE SAMPLING;376
52.7;SIMULATION RESULTS;379
52.8;SUMMARY;379
52.9;Acknowledgements;379
52.10;REFERENCES;379
53;CHAPTER 45. A DEVELOPMENT METHODOLOGY FOR SPACE A&R CONTROL SYSTEMS;380
53.1;INTRODUCTION;380
53.2;OVERVIEW OF THE CDM;381
53.3;HIERARCHICAL ACTIVITY ANALYSIS;382
53.4;FUNCTIONAL REQUIREMENTS ANALYSIS;383
53.5;OPERATIONAL REQUIREMENTS ANALYSIS;384
53.6;DESIGN AND PRODUCTION;385
53.7;CONCLUSIONS;385
53.8;REFERENCES;385
54;CHAPTER 46. RENDEZVOUS AND BERTHING BETWEEN COLUMBUS FREE FLYING LABORATORY AND SPACE STATION FREEDOM;386
54.1;1 Introduction;386
54.2;2 Fundamentals;386
54.3;3 Safe Trajectory Concept;388
54.4;4 RvB Scenario;390
54.5;5 Conclusion;391
54.6;6 Acknowledgement;391
54.7;References;391
55;CHAPTER 47. SYNTHESIS OF ROBUST MULTIVARIABLE CONTROLLERS FOR LARGE FLEXIBLE STRUCTURES;392
55.1;1 Introduction;392
55.2;2 Design Problem Formulation;393
55.3;3 Robust Control Synthesis Method;393
55.4;4 Design Example;394
55.5;5 Conclusions;395
55.6;References;395
56;CHAPTER 48. DIRECT NUMERICAL DESIGN OF REDUCED ORDER CONTROLLERS FROM EXPERIMENTAL DATA;398
56.1;INTRODUCTION;398
56.2;APPLICATION TO THE ACES FACILITY;399
56.3;CONCLUSIONS;403
56.4;REFERENCES;403
57;CHAPTER 49. THE NASA-LaRC CONTROLS-STRUCTURES INTERACTION (CSI) TECHNOLOGY PROGRAM;404
57.1;INTRODUCTION;404
57.2;PROGRAM ORGANIZATION;405
57.3;MISSION BENEFITS USING CSI TECHNOLOGY;405
57.4;INTEGRATED ANALYTICAL DESIGN METHODS;406
57.5;GROUND TEST METHODS;408
57.6;FLIGHT TEST ARTICLES;409
57.7;CONCLUDING REMARKS;410
57.8;REFERB\lCES;410
58;CHAPTER 50. DYNAMIC ALIGNMENT OF GIMBALLED AND FIXED SUBSYSTEMS ON FLEXIBLE HELICOPTERS;418
58.1;INTRODUCTION;418
58.2;MISALIGNMENT PROCESS;419
58.3;TRUTH MODEL;420
58.4;THE MEASUREMENTS AND THEIR FILTER MODEL;421
58.5;STATE MATRICES;423
58.6;RESULTS;423
58.7;CONCLUSIONS;424
58.8;REFERENCES;425
59;CHAPTER 51. MODAL CHARACTERIZATION OF THE ASCIE SEGMENTED OPTICS TEST BED: NEW ALGORITHMS AND EXPERIMENTAL RESULTS;426
59.1;INTRODUCTION;426
59.2;ASCIE TEST-BED;427
59.3;DATA ACQUISITION;428
59.4;ON-LINE MODAL TESTING;428
59.5;DYNAMIC CHARACTERIZATION OF ASCIE;429
59.6;CONCLUSION;431
59.7;AKNOWLEDGEMENTS;432
59.8;References;432
60;CHAPTER 52.
ACTIVE STRUCTURAL CONROL ON THE ASCIE TESTBED;434
60.1;Introduction;434
60.2;Experimental Hardware;435
60.3;Control Law Discussion;436
60.4;Experimental Results;437
60.5;Conclusions;437
60.6;Acknowledgments;438
60.7;References;438
61;CHAPTER 53. A POINTING AND CONTROL ARCHITECTURE FOR LARGE OPTICAL AEROSPACE SYSTEMS;440
61.1;INTRODUCTION;440
61.2;THE PROBLEM STATEMENT;440
61.3;ADVANCES;442
61.4;SBL PLATFORM STUDY;442
61.5;SIMULATION/ANALYSIS RESULTS;444
61.6;Conclusions;445
61.7;SUMMARY;445
61.8;REFERENCES;445
62;CHAPTER 54. MODELING AND CONTROL OF A SPACECRAFT WITH MANOEUVRABLE FLEXIBLE BEAMS;446
62.1;Introduction;446
62.2;System Description;446
62.3;The Mathematical Model;448
62.4;Controller Design;449
62.5;Numerical Example;450
62.6;Conclusions;450
62.7;References;451
63;CHAPTER 55.
GENERAL ACTIVE MICROMOTION ATTENUATOR;452
63.1;INTRODUCTION;452
63.2;CONTROL SYNTHESIS;454
63.3;QUADRATIC METHOD;454
63.4;MODAL METHOD;455
63.5;CONCLUSIONS;455
63.6;REFERENCES;455
64;CHAPTER 56. NEW METHODS FOR NEW CHALLENGE IN SPACECRAFT CONTROL DESIGN;456
64.1;INTRODUCTION;456
64.2;SPACE APPLICATION OF ADVANCED AUTOMATICS;456
64.3;A NEW CAD TOOL;459
64.4;CONCLUSION;461
64.5;Acknowledgment;461
64.6;REFERENCES;461
65;CHAPTER 57. LOCALIZATION OF STRUCTURAL FLAWS USING CROSS TRANSFER FUNCTION ZEROS;462
65.1;INTRODUCTION;462
65.2;EFFECT OF FREQUENCY SEPARATION ON LOCALIZATION ACCURACY;463
65.3;CALCULATION OF CROSS TRANSFER FUNCTION ZEROS;463
65.4;FREQUENCY CORRECTION FACTOR FOR CROSS ZEROS;464
65.5;FREQUENCY BASED LOCALIZATION PROCEDURE;465
65.6;APPLICATION OF FREQUENCY BASED LOCALIZATION TO NASTRAN MODEL OF ASIMPLE BEAM;465
65.7;CONCLUSIONS;466
65.8;REFERENCES;466
66;CHAPTER 58. FEATURE RECOGNITION OF TWODIMENSIONALOBJECT SCENES USING CONTOUR CURVATURE REPRESENTATION;468
66.1;INTRODUCTION;468
66.2;CONTOUR CURVATURE REPRESENTA;468
66.3;CONTOUR CURVATURE REPRESENTATION;468
66.4;COMPUTATION OF THE CURVATURE FUNCTION;469
66.5;MODEL-MATCHING METHOD;470
66.6;AUTONOMOUS FEATURE-TRACKING APPLICATIONS;471
66.7;CONCLUSION;472
66.8;ACKNOWLEDGMENTS;473
66.9;REFERENCES;473
67;CHAPTER 59. SPACE TELESCOPE AND PROPOSED CONCEPTS FOR THE POINTING CONTROL OF THE NEXT GENERATION SPACE TELESCOPE (NGST);474
67.1;Introduction;474
67.2;State of the art: the Hubble Space Telescope;474
67.3;On-orbit tracking performance of HST;475
67.4;The Next Generation Space Telescope (NGST);476
67.5;High Earth Orbit;476
67.6;High stiffness structure;477
67.7;Active optics;478
67.8;Conclusion;478
67.9;Acknowledgements;479
67.10;References;479
68;CHAPTER 60. CONTROL STRUCTURE INTERACTION IN LONG BASELINE SPACE INTERFEROMETERS;480
68.1;Introduction;480
68.2;The JPL Multi-Layer Control Concept;481
68.3;Structural Quieting;482
68.4;Disturbance Isolation;483
68.5;Optical Control;484
68.6;Summary and Conclusions;486
68.7;Future Work;486
68.8;Acknowledgements;487
68.9;References;487
69;CHAPTER 61. CONTROL AND METROLOGY ISSUES IN LONG-BASELINE STELLAR INTERFEROMETERS;488
69.1;Abstract;488
69.2;1 Introduction;488
69.3;2 Ground-Based Interferometry;489
69.4;3 Space-Based Interferometry;491
69.5;4 Conclusion;492
69.6;5 Acknowledgments;492
69.7;References;493
70;CHAPTER 62. A NEW TRAJECTORY OPTIMISATION TOOL (ALTOS) APPLIED TO CONVENTIONAL LAUNCHERS;494
70.1;1.0 Introduction;494
70.2;2.0 Modelisation of Conventional Launchers/Trajectories;494
70.3;3.0 Optimisation Methods;495
70.4;4.0 Ascent Trajectory Simulation;495
70.5;5.0 Modelisation of an Ariane type Launcher;495
70.6;6.0 Trajectory Optimisation;496
70.7;7.0 Some ALTOS Specifics;497
70.8;8.0 Conclusion;497
70.9;9.0 Acknowledgement;497
70.10;10.0 References;498
71;CHAPTER 63. GUIDANCE AND TRAJECTORY OPTIMIZATION UNDER STATE CONSTRAINTS - APPLIED TO A SANGER-TYPE VEHICLE;500
71.1;1. INTRODUCTION;500
71.2;2. MATHEMATICAL MODEL;500
71.3;3. NECESSARY CONDITIONS OF CALCULUS OF VARIATIONS;502
71.4;4. MULTIPOINT BOUNDARY-VALUE PROBLEM;503
71.5;5. THE HYBRID METHOD;504
71.6;6. CONCLUSION;504
71.7;7. ACKNOWLEDGEMENT;505
71.8;8. REFERENCES;505
72;CHAPTER 64.
ASCENT GUIDANCE FOR AN AEROSPACE PLANE;506
72.1;Introduction;506
72.2;Modeling;506
72.3;Minimum-Fuel Ascent;507
72.4;Ascent Guidance Problem;507
72.5;Time-Scale Structure;508
72.6;Guidance Logic for Hypersonic Phase;509
72.7;Simulations;509
72.8;Conclusions;510
72.9;Acknowledgment;510
72.10;References;510
73;CHAPTER 65.
ON ASCENT GUIDANCE OF A HYPERSONIC VEHICLE;512
73.1;NOMENCLATURE;512
73.2;INTRODUCTION;512
73.3;THE DYNAMICAL MODEL;513
73.4;DESIGN OF A NEAR-OPTIMAL GUIDANCE;513
73.5;SIMULATION RESULTS;514
73.6;CONCLUSIONS;515
73.7;ACKNOWLEDGEMENT;517
73.8;REFERENCES;517
74;CHAPTER 66. NON LINEAR ATTITUDE CONTROL LAW OF A SPACE PLANE APPLICATION TO HERMES;518
74.1;INTRODUCTION;518
74.2;SPACE PLANE FLIGHT DYNAMICS;518
74.3;TASK ORIENTED ATTITUDE CONTROL LAW FOR TRANSITION;520
74.4;RESULTS;521
74.5;CONCLUSION;522
75;CHAPTER 67. STAR PATTERN RECOGNITION SENSOR OF THE ASTRO TYPE;524
75.1;INTRODUCTION;524
75.2;THE SPRS ASTRO 1;524
75.3;THE SPRS ASTRO 1M;526
75.4;CONCLUSIONS;528
75.5;REFERENCES;528
76;CHAPTER 67.
AUTONOMOUS STAR TRACKER DEVELOPMENT;530
76.1;INTRODUCTION;530
76.2;APPLICATIONS;531
76.3;DEVELOPMENT APPROACH;531
76.4;STAR IDENTIFICATION;532
76.5;SIMULATION PROGRAM;533
76.6;RESULTS;535
76.7;CONCLUSIONS AND ACKNOWLEDGEMENTS;535
76.8;REFERENCES;535
77;CHAPTER 68. IMPINGEMENT CALCULATIONS FOR ULTRA-LOW DENSITY HELIUM THRUSTERS;536
77.1;INTRODUCTION;536
77.2;PLUME EXPERIMENTS;536
77.3;COMPOSITE MODEL;538
77.4;DSMC COMPUTATIONS;538
77.5;IMPINGEMENT CALCULATIONS;539
77.6;CONCLUSIONS;540
77.7;References;541
78;CHAPTER 69. ON ORBIT THRUSTER CALIBRATION WITH APPLICATIONS TO GRAVITY PROBE B;542
78.1;1 Introduction;542
78.2;2 Calibration Technique;542
78.3;3 Simulation Verification;546
78.4;4 Practical Considerations;546
78.5;5 Conclusion;547
78.6;References;547
79;CHAPTER 70. TOWARDS A FULLY AUTOMATIC FLIGHT FOR PASSENGER AIRCRAFT AND SPACE AND EARTH REFERENCE SYSTEMS;548
79.1;Summary;548
79.2;Keywords;548
79.3;I - TOWARDS A FULLY AUTOMATIC FLIGHT;548
79.4;2. SPACE AND EARTH REFERENCE SYSTEMS;553
79.5;REFERENCES;559
79.6;TABLE I;559
80;AUTHOR INDEX;566
81;KEYWORD INDEX;568
82;SYMPOSIA VOLUMES;572




