Buch, Englisch, 120 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 377 g
Buch, Englisch, 120 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 377 g
Reihe: Studies in Computational Intelligence
ISBN: 978-3-540-85643-6
Verlag: Springer Berlin Heidelberg
Automatic Text Categorization and Clustering are becoming more and more important as the amount of text in electronic format grows and the access to it becomes more necessary and widespread. Well known applications are filtering and web search, but a large number of everyday uses exist (intelligent web search, data mining, law enforcement, etc.) Currently, researchers are employing many intelligent techniques for text categorization and clustering, ranging from support vector machines and neural networks to Bayesian inference and algebraic methods, such as Latent Semantic Indexing.
This volume offers a wide spectrum of research work developed for intelligent text categorization and clustering. In the following, we give a brief introduction of the chapters that are included in this book.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computer-Aided Design (CAD)
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Spracherkennung, Sprachverarbeitung
- Geisteswissenschaften Sprachwissenschaft Computerlinguistik, Korpuslinguistik
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Robotik
Weitere Infos & Material
Gene Selection from Microarray Data.- Preprocessing Techniques for Online Handwriting Recognition.- A Simple and Fast Term Selection Procedure for Text Clustering.- Bilingual Search Engine and Tutoring System Augmented with Query Expansion.- Comparing Clustering on Symbolic Data.- Exploring a Genetic Algorithm for Hypertext Documents Clustering.