de Carli / Masada | Motion Control for Intelligent Automation | E-Book | sack.de
E-Book

E-Book, Englisch, 420 Seiten, Web PDF

Reihe: IFAC Postprint Volume

de Carli / Masada Motion Control for Intelligent Automation


1. Auflage 2014
ISBN: 978-1-4832-9791-0
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 420 Seiten, Web PDF

Reihe: IFAC Postprint Volume

ISBN: 978-1-4832-9791-0
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



Motion Control is a rapidly evolving topic, with a wide range of applications, especially in robotics. Speed and position control of a mechanical system has always been one of the main problems in automatic control, as the demand increases for advanced levels of accuracy and dynamics. The study of motion control aims to combine theoretical approaches with the realization of mechanical systems characterized by high levels of performance. The IFAC workshop focused on the evolution of: mechanical systems modelling; control strategies; intelligent instrumentation; dedicated microprocessor devices, and new fields of application.

de Carli / Masada Motion Control for Intelligent Automation jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Motion Control for Intelligent Automation;2
3;Copyright Page;3
4;Table of Contents;8
5;Preface;6
6;CHAPTER 1. MOTION CONTROL: AN EMERGENT TECHNOLOGY;16
6.1;INTRODUCTION;16
6.2;MODEL OF THE LOAD TORQUE;16
6.3;CONTROL STRATEGIES FOR MOTION CONTROL;19
6.4;REFERENCES;21
7;CHAPTER 2. ANALYSIS OF MECHANICAL DEVICES AND SYSTEMS;22
7.1;1. INTRODUCTION;22
7.2;2. THE DYNAMICS OF MECHANICAL SYSTEMS;22
7.3;3. SOME ASPECTS OF MECHANICAL DYNAMICS;24
7.4;4. EXAMPLES;25
7.5;5. CONCLUSIONS;27
7.6;REFERENCES;27
8;CHAPTER 3. MODELS OF MECHANICAL SYSTEMS FOR CONTROLLERS DESIGN;28
8.1;INTRODUCTION;28
8.2;MATHEMATICAL MODELING AND DYNAMICS;28
8.3;SIMULATION RESULTS;30
8.4;HYBRID POSITION/FORCE AND IMPACT CONTROL OF ROBOT MANIPULATOR USING NEURAL NETWORK;32
8.5;CONCLUSIONS;32
8.6;REFERENCES;33
9;CHAPTER 4. REQUIREMENTS IN MOTION CONTROL APPLICATION;34
9.1;I. Introduction;34
9.2;II. Actuator and Mechanical System;34
9.3;III. Actuator. Mechanical System und Process;37
9.4;Conclusion;42
10;CHAPTER 5. NEW GEOMETRIC PARAMETERS FOR THE MODELLINGOF SIMPLE OR CLOSED-CHAIN MECHANISMS;44
10.1;1. INTRODUCTION;44
10.2;2· NUMBERING OF LINKS AND JOINTS;44
10.3;3· INTRODUCTION OF FRAMES OF REFERENCE AND NEW PARAMETERS;45
10.4;4· COMPUTATION OF 4X4 HOMOGENEOUS TRANSFORMATION MATRIX;46
10.5;5· EXAMPLES;46
10.6;6· CONCLUSION;47
10.7;REFERENCES;47
11;CHAPTER 6. HARDWARE-IN-THE-LOOP SIMULATION OF MULTIBODY SYSTEM MODELS WITH TRANSPUTERS;48
11.1;1. INTRODUCTION;48
11.2;2. MULTIBODY SYSTEM MODELING;48
11.3;3. PARALLEL SOLUTION OF EQUATIONS OF MOTION;49
11.4;4. TRANSPUTER IMPLEMENTATION;51
11.5;5. EXAMPLES FOR APPLICATION TO ROBOT SIMULATION;52
11.6;6. CONCLUSIONS;53
11.7;7. REFERENCES;53
12;CHAPTER 7. PARALLEL RECURSIVE ESTIMATION ALGORITHM FOR DYNAMIC MODEL PARAMETERS OF A ROBOT ARM;54
12.1;1. Introduction;54
12.2;2. Parallel Dynamic Model;54
12.3;3. Parallel Structures for Recursive Parameter Estimation;56
12.4;4. Simulation Results;56
12.5;5. Conclusions;56
12.6;6. References;57
12.7;Appendix A;57
13;CHAPTER 8. TRANSDUCERS FOR MOTION CONTROL;60
13.1;INTRODUCTION;60
13.2;TRANSDUCER CLASSIFICATION;61
13.3;LINEAR MOTION;62
13.4;ROTARY MOTION;65
13.5;COMPLEX MOTION IN TWO-DIMENSIONS;66
13.6;COMPLEX MOTION IN THREE-DIMENSIONS;68
13.7;REFERENCES;69
14;CHAPTER 9. COMPUTER BASED CORRECTION OF SENSOR SIGNALS;72
14.1;1. INTRODUCTION;72
14.2;2. DIGITAL CORRECTION OF CROSS SENSITIVITIES OF SENSORS TO AMBIENT TEMPERATURE;73
14.3;3. ALGORITHMIC HYSTERESIS ERROR CORRECTION;75
14.4;4. CONCLUSIONS;79
14.5;5. REFERENCES;79
15;CHAPTER 10. INTELLIGENT ACTUATORS WAYS TO AUTONOMOUS ACTUATING SYSTEMS;80
15.1;1. Introduction;80
15.2;2. Actuator Principles;81
15.3;3. Modelling and Identification of Actuators;82
15.4;4. Model Based Nonlinear Control of Actuators;84
15.5;5. Model Based Control of an Electromagnetic Actator;85
15.6;6. Model Based Control of a Pneumatic Actuator;87
15.7;7. Model Based Fault Detection, Diagnosis and Supervision of Actuators;88
15.8;8. Implementation on Microcontrollers;90
15.9;9. Conclusions and further Development;90
15.10;Acknowledgements;90
15.11;References;90
16;CHAPTER 11. ADVANCED TECHNIQUES IN COMMERCIAL AC DRIVES;92
16.1;INTRODUCTION;92
16.2;WHY AC DRIVE?;92
16.3;AC DRIVES USING GENERAL PURPOSE INVERTER;93
16.4;OTHER KINDS OF AC DRIVES;94
16.5;CONCLUSION;96
16.6;LITERATURES;96
17;CHAPTER 12. EFFICIENCY IMPROVEMENT OF NONLINEAR ACTUATORS BY CASCADE MODEL APPROXIMATION;98
17.1;INTRODUCTION;98
17.2;PROBLEM STATEMENT;99
17.3;LINEARIZATION OF CASCADE MODELS;99
17.4;TEST PLANT;100
17.5;EFFICIENCY ASSESSMENT;101
17.6;LIMITS TO THE APPROACH;102
17.7;CONCLUSIONS AND OUTLOOK;103
17.8;REFERENCES;103
18;CHAPTER 13. BILINEAR MODELLING AND STATE-FEEDBACK CONTROL OF AN ELECTRO-HYDRAULIC DRIVE;104
18.1;INTRODUCTION;104
18.2;BILINEAR CHARACTERISTICS OF THE PLANT DYNAMICS;104
18.3;ALGORITHM OF BILINEAR MODELIDENTIFICATION;105
18.4;IDENTIFICATION RESULTS;106
18.5;FEEDBACK LINEARIZATIONTRACKING CONTROLAND;107
18.6;BILINEAR OBSERVER DESIGN;108
18.7;CONCLUSIONS;109
18.8;ACKNOWLEDGMENT;109
18.9;REFERENCES;109
19;CHAPTER 14. DIGITAL POSITION AND VELOCITY DETERMINATIONIN CONTROLLED DRIVE SYSTEMS;110
19.1;1. INTRODUCTION;110
19.2;2. POSITION SENSORS;111
19.3;3. VELOCITY DETERMINATION;113
19.4;4. DESIGN STRATEGY;115
19.5;5. CONCLUSION;115
19.6;REFERENCES;115
20;CHAPTER 15. AUTOMATIC TUNING OF INDUSTRIAL D.C. DRIVES;116
20.1;I. INTRODUCTION;116
20.2;II. MODEL OF THE DRIVE;116
20.3;III. THE IDENTIFICATION METHOD;117
20.4;IV. REALIZATION OF THE PROPOSED IDENTIFICATION PROCEDURE;118
20.5;V. SYNTHESIS OF SPEED CONTROLLER;120
20.6;CONCLUSIONS;121
20.7;ACKNOWLEDGMENTS;121
20.8;REFERENCES;121
21;CHAPTER 16. HOLLOW-SHAFT ACTUATORS FOR INTELLIGENT AUTOMATION;122
21.1;1. Introduction;122
21.2;2. Performance Requirements for Precision Motion Control Applications;122
21.3;3. Harmonic Drive Reduction Gearing;123
21.4;4. A New Generation of Hollow-Shaft Servo Actuators;125
22;CHAPTER 17. HIGH PERFORMANCE APPLICATIONS: ROBOT MOTION IN COMPLEX ENVIRONMENTS;128
22.1;INTRODUCTION;128
22.2;COOPERATING ROBOT WITH VISION AND TACTILE SENSORS;128
22.3;ROBOTRAC - A MOBILE SENSOR SUPPORTED MANIPULATOR;130
22.4;A PINGPONG PLAYING ROBOT;130
22.5;A POLITE, MOBILE ROBOT;130
22.6;CONCLUSIONS;131
22.7;REFERENCES;131
23;CHAPTER 18. HIGH PERFORMANCE CONTROL OF ROBOT MANIPULATOR WITHOUT USING INVERSE DYNAMICS;134
23.1;1. INTRODUCTION;134
23.2;2. DISTURBANCE OBSERVER;134
23.3;3. BASIC DESIGN OF TDOF ROBUST SERVO SYSTEM;134
23.4;4. ROBUST POSITION CONTROLLER;135
23.5;5. ROBUST TRAJECTORY CONTROL OF MULTI-AXIS MANIPULATOR;135
23.6;6. VARIOUS MOTION CONTROLS INCLUDING CONTACT WITH ENVIRONMENT;136
23.7;7. ADVANTAGES OF OUR METHOD TO THE COMPUTED TORQUE METHOD;136
23.8;8. TDOF FORCE CONTROLLER BASED ON TDOF ACCELERATION CONTROLLER;136
23.9;9. CONCLUSION;137
23.10;ACKNOWLEDGEMENT;137
23.11;REFERENCES;137
24;CHAPTER 19. MINIMUM ENERGY OPERATION CONDITIONS OF INDUCTION MOTORS UNDER TORQUE REGULATION;142
24.1;1 Introduction;142
24.2;2 Dynamic Model of the Induction Motor;142
24.3;3 Minimum Energy Steadystate Operation Points;143
24.4;4 The Machine Efficiency under Minimum Energy;145
24.5;5 The Torque Regulation;146
24.6;6 Simulation;147
24.7;References;148
25;CHAPTER 20. ADAPTIVE CONTROL OF STEPPER MOTORS VIA NONLINEAR EXTENDED MATCHING;150
25.1;INTRODUCTION;150
25.2;FEEDBACK LINEARIZATION;150
25.3;ADAPTIVE FEEDBACK LINEARIZATION VIA EXTENDED MATCHING;151
25.4;SIMULATION RESULTS;153
25.5;CONCLUSIONS;153
25.6;ACKNOWLEDGEMENTS;154
25.7;References;154
26;CHAPTER 21. PERFORMANCES OF A MODEL REFERENCE ADAPTIVE CONTROL OF AN INDUSTRIAL ROBOT;156
26.1;1. Introduction;156
26.2;2. Robot manipulator dynamics;156
26.3;3. The structure of the control system;157
26.4;4. The adaptation mechnism;157
26.5;5. Discretization of the adaptive laws;158
26.6;6. Initialization of the MRAC-algorithm;158
26.7;7. Experiments;159
26.8;8, Conclusions;161
26.9;References;161
27;CHAPTER 22. ADVANCED VARIABLE STRUCTURE CONTROL OF HIGH PERFORMANCE DRIVES;162
27.1;INTRODUCTION;162
27.2;VARIABLE STRUCTURE CONTROLLER;163
27.3;ADAPTIVE BACK E.M.F. IDENTIFICATION;164
27.4;PHASE ADVANCE OPTIMIZATION;165
27.5;DISTURBANCE OBSERVER DESIGN;166
27.6;CONCLUSIONS;166
27.7;ACKNOWLEDGMENTS;167
27.8;LIST OF SYMBOLS;167
27.9;REFERENCES;167
28;CHAPTER 23. VIBRATION CONTROL OF A FLEXIBLE CARTESIAN ROBOT: EXTENSION OF A PRESHAPING INPUT METHOD;168
28.1;ABSTRACT;168
28.2;INTRODUCTION;168
28.3;EXTENSION OF THE METHOD;168
28.4;ROBUSTNESS ANALYSIS;172
28.5;CONCLUSIONS;172
28.6;ACKNOWLEDGMENTS;172
28.7;REFERENCES;172
29;CHAPTER 24. DESIGN OF AC DRIVES WITH POSITION AND SPEED DYNAMIC CONTROL;174
29.1;INTRODUCTION;174
29.2;CONTROL STRATEGY;174
29.3;FLUX ACQUISITION MODEL;174
29.4;MICROPROCESSOR;175
29.5;INVERTER;175
29.6;ENCODER;176
29.7;ANALOG FILTER;176
29.8;TEST RESULTS;177
29.9;CONCLUSIONS;178
29.10;REFERENCES;178
30;CHAPTER 25. POLYNOMIAL PREDICTIVE FUNCTIONAL CONTROLLER FOR A.C. MOTORS;180
30.1;INTRODUCTION;180
30.2;MODEL BASED PREDICTIVE CONTROL;180
30.3;POLYNOMIAL APPROACH;182
30.4;CONCLUSIONS;185
30.5;REFERENCES;185
31;CHAPTER 26. NONLINEAR TORQUE TRACKING CONTROL OF INDUCTION MOTORS;186
31.1;1 Problem Formulation;186
31.2;2 Main Result;187
31.3;3 Proof of Main Result;188
31.4;4 Simulation Results;189
31.5;5 Concluding Remarks;189
31.6;References;189
32;CHAPTER 27. STATIC AND DYNAMIC MODELLING OF SEQUENTIALLY SWITCHED NETWORKS;192
32.1;1 Introduction;192
32.2;2 System formulation;192
32.3;3 State evolution;193
32.4;4 Cyclic state;194
32.5;5 Small signal model;195
32.6;6 Example;196
32.7;7 Conclusions;197
32.8;References;197
33;CHAPTER 28. FUZZY NEURAL POSITION CONTROLLER FOR SERVOMOTORS;198
33.1;1. INTRODUCTION;198
33.2;2. CONTROL METHODS;198
33.3;3. HARDWARE OF OVERALL SYSTEM;199
33.4;4. CONTROL RESULTS;199
33.5;5. CONCLUSION;199
33.6;REFERENCES;199
34;CHAPTER 29. VARIABLE STRUCTURE CONTROLLERS IN MOTION CONTROL SYSTEMS;204
34.1;1. INTRODUCTION;204
34.2;2. ANALYSIS OF THE CONTROL PLANTS;204
34.3;3. THE CONTROL SYSTEM DESIGN;205
34.4;4. CONTROL VECTOR MAPPING;206
34.5;5. SELECTION OF THE OUTER LOOP CONTROLLER;206
34.6;6. SWITCHING FUNCTION ESTIMATION;207
34.7;7. SIMULATION AND EXPERIMENTAL RESULTS;208
34.8;8. CONCLUSIONS;209
34.9;9. ACKNOWLEDGMENT;209
34.10;REFERENCES;209
35;CHAPTER 30. VARIABLE STRUCTURE CONTROL AND BINARY CONTROL, A COMPARISON;210
35.1;INTRODUCTION;210
35.2;UNIFIED FEEDBACK DESIGN;210
35.3;HIGH-GAIN FEEDBACK;212
35.4;BINARY CONTROL;213
35.5;CONCLUSIONS;215
35.6;REFERENCES;215
36;CHAPTER 31. NON-LINEAR CONTROL STRATEGIES FOR INDUCTION MOTOR DRIVES;216
36.1;1. INTRODUCTION;216
36.2;2. MODEL OF THE MACHINE;217
36.3;3. NONLINEAR STATE FEEDBACK DECOUPLING;218
36.4;4. ADAPTIVE CONTROL;220
36.5;5. CONCLUSION;221
36.6;REFERENCES;222
37;CHAPTER 32. COMPARISON OF EQUATION BASED FUZZY CONTROLLERS;224
37.1;1. INTRODUCTION;224
37.2;2. A GLIMPSE TO FUZZY LOGIC;225
37.3;3. NON-EQUATION-BASED CONTROLLERS;226
37.4;4. EQUATION BASED METHODS;227
37.5;5. COMPARISONS;229
37.6;6. CONCLUSIONS;230
37.7;References;230
38;CHAPTER 33. AN EXPERT SYSTEM FOR ON-LINE FAULT DIAGNOSIS AND CONTROL OF A RAILWAY LOCOMOTIVE;232
38.1;1. INTRODUCTION;232
38.2;2. ON-LINE EXPERT SYSTEM ARCHITECTURE;232
38.3;3. DESCRIPTION OF THE PLANT;233
38.4;4. KNOWLEDGE REPRESENTATION;233
38.5;5. SOFTWARE AND HARDWARE FRAMEWORK;234
38.6;6. HANDLING UNCERTAINTY INHERENT LINGUISTIC TERMS;234
38.7;7. AN EXAMPLE OF DIAGNOSIS AND CONTROL;235
38.8;8. CONCLUSIONS;235
38.9;ACKNOWLEDGEMENTS;235
38.10;REFERENCES;235
38.11;APPENDIX;235
39;CHAPTER 34. STEERING THE STATE OF NONLINEARLY PERTURBED LINEAR SYSTEMS BY LEARNING;238
39.1;I. INTRODUCTION;238
39.2;II. STATE STEERING BY LEARNING;238
39.3;III. AN EXAMPLE;241
39.4;IV. CONCLUSIONS;241
39.5;REFERENCES;241
40;CHAPTER 35. PNEUMATIC POSITIONER WITH FUZZY CONTROL;244
40.1;1. INTRODUCTION;244
40.2;2. SYSTEM DESCRIPTION;245
40.3;3. FUZZY MECHANICAL SYSTEM REGULATION;245
40.4;4. EXPERIMENTAL RESULTS;247
40.5;5. CONCLUSIONS;249
40.6;REFERENCES;249
41;CHAPTER 36. DEVELOPMENT OF A FUZZY CONTROLLER FOR A DC DRIVE;250
41.1;1. INTRODUCTION;250
41.2;2. FUZZY LOGIC CONTROLLER;251
41.3;3. DESIGN OF A FLC FOR A DC DRIVE;252
41.4;4. FLC IMPLEMENTATION;254
41.5;5. CONCLUSIONS;255
41.6;6.REFERENCES;255
42;CHAPTER 37. ACTIVE POSITION CONTROL OF DYNAMIC PLATFORMS;256
42.1;1. INTRODUCTION;256
42.2;2. EXPERIMENTAL RIG;257
42.3;3. ACTIVE FORCE CONTROL;257
42.4;4. RESULTS AND DISCUSSION;258
42.5;5. REFERENCES;259
43;CHAPTER 38. COMMUNICATION TECHNIQUES FOR ELECTRIC DRIVES;262
43.1;1. INTRODUCTION;262
43.2;2. DRIVE INTERFACES;262
43.3;3. ANALOG TECHNIQUES;264
43.4;4. SERIAL TECHNIQUES;264
43.5;5. PARALLEL TECHNIQUES;265
43.6;6. MULTIDROP TECHNIQUES;266
43.7;REFERENCES;267
44;CHAPTER 39. MICROPROCESSORS SYSTEMS FOR MOTION CONTROL;268
44.1;1. INTRODUCTION;268
44.2;2. MICROCOMPUTERS;269
44.3;3. MICROCOMPUTER–BASED MOTION CONTROL SYSTEM;270
45;CHAPTER 40. VISION BASED MOTION CONTROL APPLICATION FOR FACTORY AUTOMATION;274
45.1;INTRODUCTION;274
45.2;SPATIAL FILTER METHOD;274
45.3;SYSTEM CONSTRUCTION;276
45.4;MODEL OF VEHICLE;277
45.5;CORRECTION OF POSITION ERROR;277
45.6;STEERING CONTROL;278
45.7;EXPERIMENTAL RESULTS;278
45.8;CONCLUSION;278
45.9;REFERENCES;278
46;CHAPTER 41. PULSE-WIDTH AND VSS-MODULATED CONTROLLERS IN MOTION SYSTEMS;280
46.1;INTRODUCTION;280
46.2;DISCRETE PULSE MODULATION;280
46.3;VARIABLE STRUCTURE SYSTEMS;282
46.4;VSS FOR PULSE GENERATION;282
46.5;SIMULATION EXPERIMENTS;283
46.6;CONCLUSIONS;285
46.7;ACKNOWLEDGEMENTS;285
46.8;REFERENCES;285
47;CHAPTER 42. FUZZY LOGIC CONTROLLER DESIGN BASED ON VARIABLE STRUCTURE CONTROL;286
47.1;INTRODUCTION;286
47.2;FUNDAMENTAL CONCEPTS OF FUZZY LOGIC CONTROLLER;286
47.3;FUZZY LOGIC CONTROLLER;287
47.4;QUASI-SLIDING CONTROL;289
47.5;GLOBAL STABILITY ANALYSIS;289
47.6;CONCLUSION;290
47.7;REFERENCE;291
48;CHAPTER 43. DIGITAL SLIDING MODE TORQUE CONTROL FORINDUCTION SERVO DRIVES;292
48.1;CONTROL METHOD;292
48.2;MODELIZATION;293
48.3;MATHEMATICAL ANALYSIS;293
48.4;ROTOR FLUX OBSERVER;294
48.5;INVERTER COMMAND SELECTION;296
48.6;CONCLUSION;297
48.7;ACKNOWLEDGMENT;297
48.8;REFERENCES;297
49;CHAPTER 44. A SIMPLIFIED STRATEGY TO IMPLEMENT SLIDINGMODE CONTROL OF A TWO-JOINTS ROBOT WITH A FLEXIBLE FOREARM;298
49.1;1. INTRODUCTION;298
49.2;2. MODEL OF THE ELASTIC ROBOT;299
49.3;3. SLIDING MODE CONTROL FOR THE TWO ARM ROBOT;299
49.4;4. STATE VECTOR ESTIMATION;300
49.5;5. EXPERIMENTAL RESULTS;300
49.6;6. CONCLUSIONS;301
49.7;REFERENCES;301
50;CHAPTER 45. FAST DOCKING OF A MOBILE ROBOT USING PASSIVE VISION;304
50.1;1 INTRODUCTION;304
50.2;2 LOCALIZATION RELATIVE TO THE DOCKING STATION;305
50.3;3 DOCKING STRATEGY;306
50.4;4 POSITION UPDATE;306
50.5;5 IMPLEMENTATION;308
50.6;REFERENCES;309
51;CHAPTER 46. AUTOMATIC RECOGNITION OF LANES FOR HIGHWAY DRIVING;310
51.1;ABSTRACT;310
51.2;1. INTRODUCTION;310
51.3;2. CHARACTERISTICS REQUIRED OF APATHWAY TRACKER;311
51.4;4. IMPLEMENTATION;313
51.5;5. EXPERIMENTAL RESULTS;313
51.6;6. CONCLUSIONS;315
51.7;ACKNOWLEDGMENT;315
51.8;REFERENCES;315
52;CHAPTER 47. VISUAL FEEDBACK FOR RIGID BODY MOTION CONTROL;316
52.1;1 Introduction;316
52.2;2 The simulation system for visual feedback control;316
52.3;3 Image generation system;318
52.4;4 Reconstruction of motion parameters from a sequence of images;318
52.5;5 Control algorithms;319
52.6;Acknowledgement;320
52.7;6 References;320
53;CHAPTER 48. AUTONOMOUS VEHICLE POSITION CONTROL BASED ON A LOCAL DOMAIN STATE SPACE MODEL;322
53.1;1 Introduction;322
53.2;2 Model derivation;323
53.3;3 Controller Design;324
53.4;4 Actuator dynamics;324
53.5;5 Arbitrary target point;325
53.6;6 Experimental Realisation;326
53.7;7 Conclusion;327
53.8;References;327
54;CHAPTER 49. WALKING ROBOT ADAPTATION TO GROUND PROPERTIES USING FUZZY CONTROL;328
54.1;INTRODUCTION;328
54.2;MODELLING;329
54.3;FUZZY LOGIC BASED CONTROL;330
54.4;RESULTS;331
54.5;CONCLUSIONS;332
54.6;ACKNOWLEDGEMENTS;332
54.7;REFERENCES;332
55;CHAPTER 50. HOMING GUIDANCE SCHEMES FOR AUTONOMOUS VEHICLES;334
55.1;1. INTRODUCTION;334
55.2;2. System Architecture and Simulation Environment;334
55.3;3. Control Strategies - Details and Performance Comparisons;336
55.4;4. Perspectives;339
55.5;Acknowledgements;339
55.6;References;339
56;CHAPTER 51. OBSTACLE AVOIDANCE USING TACTILE SENSING FORAN AUTONOMOUS MOBILE ROBOT;340
56.1;1 INTRODUCTION;340
56.2;2 PROBLEM FORMULATION;341
56.3;3 SOLUTION APPROACH;341
56.4;4 IMPLEMENTATION;343
56.5;5 EXPERIMENTS;343
56.6;6 DISCUSSIONS AND FINAL REMARKS;344
56.7;REFERENCES;344
57;CHAPTER 52. MOTION CONTROL ALGORITHM FOR A GROUP OF VEHICLES;346
57.1;1. PROBLEM FORMULATION;346
57.2;2. MOTION CONTROL ALGORITHMS;348
57.3;3. TESTING RESULTS;350
57.4;4. CONCLUSION;351
57.5;REFERENCES;351
58;CHAPTER 53. TASK SPACE CONTROL OF THE DELTA PARALLEL ROBOT;352
58.1;1 INTRODUCTION;352
58.2;2 PARALLEL ROBOTS;352
58.3;3 THE DELTA ROBOT;353
58.4;4 COMPUTED TORQUE BASED CONTROL;355
58.5;5 IMPLEMENTATION;356
58.6;6 FUTURE RESEARCH;357
58.7;7 REFERENCES;357
59;CHAPTER 54. HIGH PERFORMANCE ROBOT CONTROLLER BASED ON WEDSP 32C;358
59.1;INTRODUCTION;358
59.2;INTERFACES;360
59.3;CONTROL ALGORITHMS;361
59.4;CONCLUSIONS;362
59.5;REFERENCES;362
60;CHAPTER 55. A HIGH-PERFORMANCE MICROPROCESSOR-CONTROLLED PWM INVERTER FOR AC MOTOR DRIVES;364
60.1;1. INTRODUCTION;364
60.2;2. PWM TECHNIQUES;364
60.3;3. COMPUTATIONAL ARCHITECTURE;367
60.4;4. EXPERIMENTAL RESULTS;368
60.5;5. CONCLUSIONS;369
60.6;ACKNOWLEDGMENTS;369
60.7;REFERENCES;369
61;CHAPTER 56. NEW MICROPROCESSOR SYSTEM EASIES CUSTOM CONTROLS BUILDING-UP;370
61.1;1. INTRODUCTION;370
61.2;2. THE BUS ARCHITECTURE;371
61.3;3. CPU ARCHITECTURE;372
61.4;4. AN APPLICATION SAMPLE;374
61.5;5. CONCLUSIONS;374
61.6;REFERENCES;374
62;CHAPTER 57. MICROCOMPUTER CONTROL FOR ELECTRICAL AND SYNCHRONOUS GENERATORS;376
62.1;ABSTRACT;376
62.2;KEYWORDS;376
62.3;1. INTRODUCTION;376
62.4;2. THE GANZ DCS MICROCOMPUTER;376
62.5;3. REDUNDANT CONTROL FOR POWERPLANT GENERATORS;378
62.6;4. FIELD EXPERIENCE;380
62.7;5. CONCLUSION AND FUTURE WORKS;381
62.8;REFERENCES;381
63;CHAPTER 58. ROBUST AND ADAPTIVE CONTROL STRATEGIES;382
63.1;1. INTRODUCTION;382
63.2;2. STRUCTURE OF DISTURBANCE OBSERVER;382
63.3;3. DYNAMICS IDENTIFICATION OF MULTI-DEGREES-OF-FREEDOM ROBOT;383
63.4;4. VERIFICATION OF ESTABLISHED DYNAMIC MODEL;386
63.5;5. CONCLUSIONS;387
63.6;REFERENCES;387
64;CHAPTER 59. IDENTIFICATION AND CONTROL OF ELECTRICAL DRIVES;388
64.1;I - INTRODUCTION;388
64.2;II - IDENTIFICATION OF DISCRETETIME MODELS FOR ELECTRICAL DRIVES;388
64.3;Ill - CONTROL STRATEGIES;389
64.4;IV - DIGITAL SPEED CONTROL OF ADC MOTOR;390
64.5;V - CONCLUSION;391
64.6;REFERENCES;391
65;CHAPTER 60. IMPROVEMENT OF REFERENCE TRACKING CAPABILITY OF DIGITAL MOTION CONTROL SYSTEMS;394
65.1;INTRODUCTION;394
65.2;STATIONARY BEHAVIOR OF CONTROL SYSTEMS;394
65.3;EXAMPLES;394
65.4;EXAMPLE 2;395
65.5;DISCRETE SYSTEMS;396
65.6;DISCUSSION;397
65.7;CONTROLLER DESIGN;397
65.8;SATURATION EFFECTS;397
65.9;GENERAL CONTROLLER DESIGN PROCEDURES;397
65.10;SOME RESULTS;399
65.11;RELATIONSHIP TOPREDICTIVE CONTROL;399
65.12;REFERENCES;399
66;CHAPTER 61. OPTIMAL CONTROL OF STEPPER MOTOR WITH DEFINITION OF SAFETY FACTOR;400
66.1;L INTRODUCTION;400
66.2;II. LIST OF PRINCIPAL SYMBOLS;400
66.3;III. MATHEMATICAL MODELS OF STEPPER;400
66.4;IV. OPTIMAL CONTROL OF STEPPER MOTOR;401
66.5;V. CONTROL WITH SAFETY FACTOR;403
66.6;VI. EXPERIMENTAL RESULTS AND CONCLUSION;403
66.7;REFERENCES;404
67;CHAPTER 62. ACHIEVING THE SPATIO-TEMPORAL SEGMENTATION IN A FEATURE SPACE. AN UNSUPERVISED PATTERN RECOGNITION APPROACH;406
67.1;1. INTRODUCTION;406
67.2;2. MOTION ANALYSIS;406
67.3;3. STATISTICAL PATTERN RECOGNITION;407
67.4;4. SPATIO-TEMPORAL SEGMENTATION AND UNSUPERVISED CLASSIFICATION;408
67.5;5. APPLICATION & RESULTS;410
67.6;6. CONCLUSION;411
67.7;REFERENCES;411
68;CHAPTER 63. A METHOD FOR LINE SEGMENT MATCHING IN AN IMAGE SEQUENCE;412
68.1;1. INTRODUCTION;412
68.2;2. TEMPORAL MATCHING;412
68.3;3. SPATIAL MATCHING;414
68.4;4. RESULTS;415
68.5;5. CONCLUSION;416
68.6;6. APPENDIX;416
68.7;7. ACKNOWLEDGMENTS;417
68.8;8. REFERENCES;417
69;CHAPTER 64. MOTION CONTROL OF AN ELECTROPNEUMATIC DRIVEN LEGGED ROBOT;418
69.1;1- INTRODUCTION;418
69.2;2- DESCRIPTION OF THE ROBOT;419
69.3;3- CONTROL SCHEMES FOR A PNEUMATIC JOINT;420
69.4;4- EVALUATION OF THE LEG FOLLOWING A DESIRED TRAJECTORY;422
69.5;5- CONCLUSION;422
69.6;REFERENCES;422
70;CHAPTER 65. THE GALILEO TELESCOPE DRIVE SYSTEM;424
70.1;1.INTRODUCTION;424
70.2;2. A BRIEF TNG ACTIVE OPTICS OVERVIEW;424
70.3;3. TNG MAIN CARACTERISTICS;425
70.4;4. THE TNG DRIVE SYSTEM;426
70.5;5. FUNCTIONAL BLOCK DIAGRAM OF THE DRIVE SYSTEM;427
70.6;6. SIMULATIONS;428
70.7;7. DIGITAL CONTROL SYSTEM AND MANAGEMENT;429
70.8;8. CONCLUSIONS;429
70.9;REFERENCES;429
71;CHAPTER 66. DESIGN AND DEVELOPEMENT OF FUZZY CONTROLLED CONTROLLED AC MOTOR DRIVES;430
71.1;INTRODUCTION;430
71.2;ELEMENTS OF THE FUZZY SETS THEORY;430
71.3;THE FUZZY MICROCONTROLLER;432
71.4;DESIGN OF THE FUZZY REGULATOR;433
71.5;THE EXPERIMENTAL PROTOTYPE;434
71.6;CONCLUSIONS;435
71.7;ACKNOWLEDGEMENTS;435
71.8;REFERENCES;435
72;AUTHOR INDEX;436



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.