de Bruijne / Cattin / Cotin | Medical Image Computing and Computer Assisted Intervention - MICCAI 2021 | Buch | 978-3-030-87230-4 | sack.de

Buch, Englisch, Band 12906, 626 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1003 g

Reihe: Lecture Notes in Computer Science

de Bruijne / Cattin / Cotin

Medical Image Computing and Computer Assisted Intervention - MICCAI 2021

24th International Conference, Strasbourg, France, September 27-October 1, 2021, Proceedings, Part VI

Buch, Englisch, Band 12906, 626 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1003 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-030-87230-4
Verlag: Springer Nature Switzerland


The eight-volume set LNCS 12901, 12902, 12903, 12904, 12905, 12906, 12907, and 12908 constitutes the refereed proceedings of the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2021, held in Strasbourg, France, in September/October 2021.*

The 531 revised full papers presented were carefully reviewed and selected from 1630 submissions in a double-blind review process. The papers are organized in the following topical sections:

Part I: image segmentation

Part II: machine learning - self-supervised learning; machine learning - semi-supervised learning; and machine learning - weakly supervised learning

Part III: machine learning - advances in machine learning theory; machine learning - attention models; machine learning - domain adaptation; machine learning - federated learning; machine learning - interpretability / explainability; and machine learning - uncertainty

Part IV: image registration; image-guided interventions and surgery; surgical data science; surgical planning and simulation; surgical skill and work flow analysis; and surgical visualization and mixed, augmented and virtual reality

Part V: computer aided diagnosis; integration of imaging with non-imaging biomarkers; and outcome/disease prediction

Part VI: image reconstruction; clinical applications - cardiac; and clinical applications - vascular

Part VII: clinical applications - abdomen; clinical applications - breast; clinical applications - dermatology; clinical applications - fetal imaging; clinical applications - lung; clinical applications - neuroimaging - brain development; clinical applications - neuroimaging - DWI and tractography; clinical applications - neuroimaging - functional brain networks; clinical applications - neuroimaging – others; and clinical applications - oncology

Part VIII: clinical applications - ophthalmology; computational (integrative) pathology; modalities - microscopy; modalities - histopathology; and modalities - ultrasound

*The conference was held virtually.

de Bruijne / Cattin / Cotin Medical Image Computing and Computer Assisted Intervention - MICCAI 2021 jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Image Reconstruction.- Two-Stage Self-Supervised Cycle-Consistency Network for Reconstruction of Thin-Slice MR Images.- Over-and-Under Complete Convolutional RNN for MRI Reconstruction.- TarGAN: Target-Aware Generative Adversarial Networks for Multi-modality Medical Image Translation.- Synthesizing Multi-Tracer PET Images for Alzheimer's Disease Patients using a 3D Unified Anatomy-aware Cyclic Adversarial Network.- Generalised Super Resolution for Quantitative MRI Using Self-Supervised Mixture of Experts.- TransCT: Dual-path Transformer for Low Dose Computed Tomography.- IREM: High-Resolution Magnetic Resonance Image Reconstruction via Implicit Neural Representation.- DA-VSR: Domain Adaptable Volumetric Super-Resolution For Medical Images.- Improving Generalizability in Limited-Angle CT Reconstruction with Sinogram Extrapolation.- Fast Magnetic Resonance Imaging on Regions of Interest: From Sensing to Reconstruction.- InDuDoNet: An Interpretable Dual Domain Network for CT MetalArtifact Reduction.- Depth Estimation for Colonoscopy Images with Self-supervised Learning from Videos.- Joint Optimization of Hadamard Sensing and Reconstruction in Compressed Sensing Fluorescence Microscopy.- Multi-Contrast MRI Super-Resolution via a Multi-Stage Integration Network.- Generator Versus Segmentor: Pseudo-healthy Synthesis.- Real-Time Mapping of Tissue Properties for Magnetic Resonance Fingerprinting.- Estimation of High Frame Rate Digital Subtraction Angiography Sequences at Low Radiation Dose.- RLP-Net: Recursive Light Propagation Network for 3-D Virtual Refocusing.- Noise Mapping and Removal in Complex-Valued Multi-Channel MRI via Optimal Shrinkage of Singular Values.- Self Context and Shape Prior for Sensorless Freehand 3D Ultrasound Reconstruction.- Universal Undersampled MRI Reconstruction.- A Neural Framework for Multi-Variable Lesion Quantification Through B-mode Style Transfer.- Temporal Feature Fusion with Sampling Pattern Optimization for Multi-echo Gradient Echo Acquisition and Image Reconstruction.- Dual-Domain Adaptive-Scaling Non-Local Network for CT Metal Artifact Reduction.- Towards Ultrafast MRI via Extreme k-Space Undersampling and Superresolution.- Adaptive Squeeze-and-Shrink Image Denoising for Improving Deep Detection of Cerebral Microbleeds.- 3D Transformer-GAN for High-quality PET Reconstruction.- Learnable Multi-scale Fourier Interpolation for Sparse View CT Image Reconstruction.- U-DuDoNet: Unpaired dual-domain network for CT metal artifact reduction.- Task Transformer Network for Joint MRI Reconstruction and Super-Resolution.- Conditional GAN with an Attention-based Generator and a 3D Discriminator for 3D Medical Image Generation.- Multimodal MRI Acceleration via Deep Cascading Networks with Peer-layer-wise Dense Connections.- Rician noise estimation for 3D Magnetic Resonance Images based on Benford's Law.- Deep J-Sense: Accelerated MRI Reconstruction via Unrolled Alternating Optimization.- Label-Free Physics-Informed ImageSequence Reconstruction with Disentangled Spatial-Temporal Modeling.- High-Resolution Hierarchical Adversarial Learning for OCT Speckle Noise Reduction.- Self-Supervised Learning for MRI Reconstruction with a Parallel Network Training Framework.- Acceleration by deep-learnt sharing of superfluous information in multi-contrast MRI.- Sequential Lung Nodule Synthesis using Attribute-guided Generative Adversarial Networks.- A Data-driven Approach for High Frame Rate Synthetic Transmit Aperture Ultrasound Imaging.- Interpretable deep learning for multimodal super-resolution of medical images.- MRI Super-Resolution Through Generative Degradation Learning.- Task-Oriented Low-Dose CT Image Denoising.- Revisiting contour-driven and knowledge-based deformable models: application to 2D-3D proximal femur reconstruction from X-ray images.- Memory-efficient Learning for High-dimensional MRI Reconstruction.- SA-GAN: Structure-Aware GAN for Organ-Preserving Synthetic CT Generation.- Clinical Applications - Cardiac.- Distortion Energy for Deep Learning-based Volumetric Finite Element Mesh Generation for Aortic Valves.- Ultrasound Video Transformers for Cardiac Ejection Fraction Estimation.- EchoCP: An Echocardiography Dataset in Contrast Transthoracic Echocardiography for Patent Foramen Ovale Diagnosis.- Transformer Network for Significant Stenosis Detection in CCTA of Coronary Arteries.- Training Automatic View Planner for Cardiac MR Imaging via Self-Supervision by Spatial Relationship between Views.- Phase-independent Latent Representation for Cardiac Shape Analysis.- Cardiac Transmembrane Potential Imaging with GCN Based Iterative Soft Threshold Network.- AtrialGeneral: Domain Generalization for Left Atrial Segmentation of Multi-Center LGE MRIs.- TVnet: Automated Time-Resolved Tracking of the Tricuspid Valve Plane in MRI Long-Axis Cine Images with a Dual-Stage Deep Learning Pipeline.- Clinical Applications - Vascular.- Deep Open Snake Tracker for Vessel Tracing.- MASC-Units: Training Oriented Filters for Segmenting Curvilinear Structures.- Vessel Width Estimation via Convolutional Regression.- Renal Cell Carcinoma Classification from Vascular Morphology.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.