E-Book, Englisch, 342 Seiten, eBook
Response of Highly Porous Solids to Shock Loading
E-Book, Englisch, 342 Seiten, eBook
Reihe: Shock Wave and High Pressure Phenomena
ISBN: 978-1-4612-2292-7
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1 Comments on Shock-Compression Science in Highly Porous Solids.- 1.1. Introduction.- 1.2. Macroscopic Deformation Characteristics of Powder Compacts.- 1.3. Scientific Issues and Tools.- 1.4. Materials Science Observations.- 1.5. Time-Resolved Stress Measurements.- 1.6. Conclusions.- Acknowledgments.- References.- 2 Shock Loading of Porous High Explosives.- 2.1. Introduction.- 2.2. Porous/Distended Materials in General.- 2.3. Equations of State for Porous Explosives.- 2.4. Compaction Waves.- 2.5. Shock Initiation of Porous Explosives.- 2.6. Detonation in Porous Explosives.- 2.7. Summary.- Acknowledgment.- References.- 3 Continuum Mixture Modeling of Reactive Porous Media.- 3.1. Introduction.- 3.2. Theoretical Foundations.- 3.3. Model Application to Shock Impact Experiments.- 3.4. Summary.- References.- 4 Two-Phase Media Model of Shock Compression with Chemical Reaction.- 4.1. Introduction.- 4.2. Two-Constituent Model of a Powder Mixture Undergoing Chemical Reaction.- 4.3. Numerical and Acoustic Analysis of Wave Processes in Three-Layer Target Containing a Cell with SnS/Sn+S Powder Mixture.- 4.4. Concluding Remarks.- Acknowledgments.- References.- 5 Developments in Constitutive Modeling of Shock-Induced Reactions in Powder Mixtures.- 5.1. Introduction.- 5.2. Comparative Features of the Reactive Models.- 5.3. Equivalence of the Reactive Models.- 5.4. Generalized VIR with Mass Transport and Chemical Reaction.- 5.5. Model Calculations.- 5.6. Conclusions.- Acknowledgments.- References.- 6 Discrete Meso-Element Modeling of Shock Processes in Powders.- 6.1. Introduction.- 6.2. Theory of the Discrete Meso-Dynamic Method.- 6.3. Determination of Material Parameters.- 6.4. Modeling Calculations of Shock Process in Powder Materials.- 6.5. Conclusion.- Acknowledgments.- References.-7 Recent Developments in Modeling Shock Compression of Porous Materials.- 7.1. Introduction.- 7.2. Pore Collapse.- 7.3. Shock Compression.- 7.4. Shock Wave Propagation in Porous Materials.- 7.5. Summary.- Acknowledgment.- References.- 8 Elastic-Plastic Waves in Porous Materials.- 8.1. Introduction.- 8.2. Mathematical Models of Porous Materials.- 8.3. Mathematical Model of a Porous Elastic-Plastic Material.- 8.4. Numerical Simulation of Shock Wave Propagation in Porous Aluminum and Iron.- 8.5. Expansion Shock Wave in Porous Material.- List of Symbols.- References.- 9 The Numerical Simulation of the Dynamic Compaction of Powders.- 9.1. Introduction.- 9.2. An Eulerian Hydrocode Formulation.- 9.3. Specialized Hydrocode Development for Shock Compaction.- 9.4. Verification of the Bulk Response.- 9.5. Predicted Powder Morphologies.- 9.6. Summary.- Acknowledgments.- References.- 10 Materials Issues in Shock-Compression-Induced Chemical Reactions in Porous Solids.- 10.1. Introduction.- 10.2. Materials Issues.- 10.3. Shock-Compression Characteristics.- 10.4. Process Mechanisms of Shock-Induced Reactions.- 10.5. Summary and Concluding Remarks.- Acknowledgments.- References.- 11 Shock Synthesis of Materials.- 11.1. Introduction.- 11.2. Experimental Techniques.- 11.3. Shock Synthesis.- 11.4. Concluding Remarks.- References.- 12 Magnetic Response of Powders to Shock Loading and Fabrication of Nanocrystalline Magnets.- 12.1. Introduction.- 12.2. Estimation of the Continuum Shock State.- 12.3. In-Situ Measurements of Magnetization.- 12.4. Magnetic Properties of Shock-Consolidated Powder.- 12.5. Conclusion.- References.- Author Index.