Davis | Infinite Group Actions on Polyhedra | Buch | 978-3-031-48442-1 | sack.de

Buch, Englisch, Band 77, 271 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 594 g

Reihe: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics

Davis

Infinite Group Actions on Polyhedra

Buch, Englisch, Band 77, 271 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 594 g

Reihe: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics

ISBN: 978-3-031-48442-1
Verlag: Springer International Publishing


In the past fifteen years, the theory of right-angled Artin groups and special cube complexes has emerged as a central topic in geometric group theory. This monograph provides an account of this theory, along with other modern techniques in geometric group theory. Structured around the theme of group actions on contractible polyhedra, this book explores two prominent methods for constructing such actions: utilizing the group of deck transformations of the universal cover of a nonpositively curved polyhedron and leveraging the theory of simple complexes of groups. The book presents various approaches to obtaining cubical examples through CAT(0) cube complexes, including the polyhedral product construction, hyperbolization procedures, and the Sageev construction. Moreover, it offers a unified presentation of important non-cubical examples, such as Coxeter groups, Artin groups, and groups that act on buildings. Designed as a resource for graduate students and researchers specializing in geometric group theory, this book should also be of high interest to mathematicians in related areas, such as 3-manifolds.
Davis Infinite Group Actions on Polyhedra jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Part I: Introduction.- 1 Introduction.- Part II: Nonpositively curved cube complexes.- 2 Polyhedral preliminaries.- 3 Right-angled spaces and groups.- Part III: Coxeter groups, Artin groups, buildings.- 4 Coxeter groups, Artin groups, buildings.- Part IV: More on NPC cube complexes.- 5 General theory of cube complexes.- 6 Hyperbolization.- 7 Morse theory and Bestvina–Brady groups.- Appendix A: Complexes of groups.


Michael Davis received a PhD in mathematics from Princeton University in 1975. He was Professor of Mathematics at Ohio State University for thirty nine years, retiring in 2022 as Professor Emeritus. In 2015 he became a Fellow of the AMS. His research is in geometric group theory and topology. Since 1981 his work has focused on topics related to reflection groups including the construction of new examples of aspherical manifolds and the study of their properties.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.