Buch, Englisch, 198 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 489 g
Reihe: Cognitive Technologies
Buch, Englisch, 198 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 489 g
Reihe: Cognitive Technologies
ISBN: 978-3-540-73245-7
Verlag: Springer Berlin Heidelberg
The authors address this question by presenting neural network models that integrate the two most fundamental phenomena of cognition: our ability to learn from experience, and our ability to reason from what has been learned. This book is the first to offer a self-contained presentation of neural network models for a number of computer science logics, including modal, temporal, and epistemic logics. By using a graphical presentation, it explains neural networks through a sound neural-symbolic integration methodology, and it focuses on the benefits of integrating effective robust learning with expressive reasoning capabilities.
The book will be invaluable reading for academic researchers, graduate students, and senior undergraduates in computer science, artificial intelligence, machine learning, cognitive science and engineering. It will also be of interest to computational logicians, and professional specialists on applications of cognitive, hybrid and artificial intelligence systems.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Robotik
- Mathematik | Informatik EDV | Informatik Informatik Logik, formale Sprachen, Automaten
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Programmierung: Methoden und Allgemeines
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Fuzzy-Systeme
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Grafikprogrammierung
- Geisteswissenschaften Philosophie Philosophische Logik, Argumentationstheorie
Weitere Infos & Material
Logic and Knowledge Representation.- Artificial Neural Networks.- Neural-Symbolic Learning Systems.- Connectionist Modal Logic.- Connectionist Temporal Reasoning.- Connectionist Intuitionistic Reasoning.- Applications of Connectionist Nonclassical Reasoning.- Fibring Neural Networks.- Relational Learning in Neural Networks.- Argumentation Frameworks as Neural Networks.- Reasoning about Probabilities in Neural Networks.- Conclusions.