Davendra / Onwubolu | Differential Evolution: A Handbook for Global Permutation-Based Combinatorial Optimization | Buch | 978-3-662-51892-2 | sack.de

Buch, Englisch, Band 175, 213 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 359 g

Reihe: Studies in Computational Intelligence

Davendra / Onwubolu

Differential Evolution: A Handbook for Global Permutation-Based Combinatorial Optimization

Buch, Englisch, Band 175, 213 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 359 g

Reihe: Studies in Computational Intelligence

ISBN: 978-3-662-51892-2
Verlag: Springer


What is combinatorial optimization? Traditionally, a problem is considered to be c- binatorial if its set of feasible solutions is both ?nite and discrete, i. e., enumerable. For example, the traveling salesman problem asks in what order a salesman should visit the cities in his territory if he wants to minimize his total mileage (see Sect. 2. 2. 2). The traveling salesman problem’s feasible solutions - permutations of city labels - c- prise a ?nite, discrete set. By contrast, Differential Evolution was originally designed to optimize functions de?ned on real spaces. Unlike combinatorial problems, the set of feasible solutions for real parameter optimization is continuous. Although Differential Evolution operates internally with ?oating-point precision, it has been applied with success to many numerical optimization problems that have t- ditionally been classi?ed as combinatorial because their feasible sets are discrete. For example, the knapsack problem’s goal is to pack objects of differing weight and value so that the knapsack’s total weight is less than a given maximum and the value of the items inside is maximized (see Sect. 2. 2. 1). The set of feasible solutions - vectors whose components are nonnegative integers - is both numerical and discrete. To handle such problems while retaining full precision, Differential Evolution copies ?oating-point - lutions to a temporary vector that, prior to being evaluated, is truncated to the nearest feasible solution, e. g., by rounding the temporary parameters to the nearest nonnegative integer.
Davendra / Onwubolu Differential Evolution: A Handbook for Global Permutation-Based Combinatorial Optimization jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Motivation for Differential Evolution for Permutative—Based Combinatorial Problems.- Differential Evolution for Permutation—Based Combinatorial Problems.- Forward Backward Transformation.- Relative Position Indexing Approach.- Smallest Position Value Approach.- Discrete/Binary Approach.- Discrete Set Handling.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.