E-Book, Englisch, 646 Seiten, Web PDF
Datz Condensed Matter
1. Auflage 2013
ISBN: 978-1-4832-1869-4
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Applied Atomic Collision Physics, Vol. 4
E-Book, Englisch, 646 Seiten, Web PDF
ISBN: 978-1-4832-1869-4
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Applied Atomic Collision Physics, Volume 4: Condensed Matter deals with the fundamental knowledge of collision processes in condensed media. The book focuses on the range of applications of atomic collisions in condensed matter, extending from effects on biological systems to the characterization and modification of solids. This volume begins with the description of some aspects of the physics involved in the production of ion beams. The radiation effects in biological and chemical systems, ion scattering and atomic diffraction, x-ray fluorescence analysis, and photoelectron and Auger spectroscopy are discussed in detail. The final two chapters in the text cover two areas of ion beam materials modification: ion implantation in semiconductors and microfabrication. This text is a good reference material for physics graduate students, experimental and theoretical physicists, and chemists.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Condensed Matter;4
3;Copyright Page;5
4;Table of Contents;6
5;Treatise Preface;12
6;Preface;14
7;Chapter 1. Heavy Ion Charge States;16
7.1;I. Introduction;17
7.2;II. Basic Processes and Mathematical Description of Charge Exchange;20
7.3;III. Experimental Aspects;26
7.4;IV. Electron Capture;31
7.5;V. Electron Loss;37
7.6;VI. Equilibrium Charge-State Distributions;41
7.7;VII. Gas and Solid Effects;50
7.8;References;52
8;Chapter 2. Ionization Phenomena and Sources of Ions;58
8.1;I. Introduction;59
8.2;II. Ion Source Selection Considerations;61
8.3;III. Vapor Transport Methods;65
8.4;IV. Positive Ionization Phenomena and Sources;69
8.5;V. Negative Ionization Phenomena and Sources;143
8.6;VI. Ion Extraction and Optics of the Extraction Region References;172
8.7;References;186
9;Chapter 3. Radiation Physics as a Basis of Radiation Chemistry and Biology;194
9.1;I. What are the Problems of Radiation Physics?;194
9.2;II. Problems of Class I: How Do Radiations Degrade in Matter?;199
9.3;III. Problems of Class II: How Does Matter Change after Receiving Energy from Radiation?;209
9.4;IV. Some Notions of Radiation Chemistry and Biology;235
9.5;V. Concluding Remarks;243
9.6;References;244
10;Chapter 4. Low Energy Ion Scattering and Atomic Diffraction;252
10.1;I. Ion Scattering Spectrometry (ISS);253
10.2;II. Scattering of Atomic Beams at Thermal Energies;265
10.3;References;273
11;Chapter 5. High Energy Ion Scattering;276
11.1;I. Introduction;276
11.2;II. Physics of Ion Scattering in Amorphous Solids;277
11.3;III. Atomic Composition of Surface Layers;282
11.4;IV. MeV Ion Scattering in Single Crystals;289
11.5;V. Structure Analysis in Crystalline Solids;297
11.6;VI. Summary;312
11.7;References;312
12;Chapter 6. Inelastic Surface Collisions;314
12.1;I. Introduction;314
12.2;II. Ion-Induced Auger Spectra;315
12.3;III. Ion Neutralization at Surfaces;320
12.4;IV. Excitation of Projectiles;329
12.5;V. Optical Emission for Target Species;333
12.6;VI. Conclusion;337
12.7;References;338
13;Chapter 7. Secondary Ion Mass Spectrometry;342
13.1;I. Introduction;342
13.2;II. The Sputtering Process;344
13.3;III. Sputtered Ion Emission: Phenomena and Models;351
13.4;IV. Instrumentation;363
13.5;V. Applications of Secondary Ion Mass Spectrometry;368
13.6;VI. Conclusion;389
13.7;References;390
14;Chapter 8. The Time-of-Flight Atom Probe and Field Ion Microscopy;394
14.1;I. Introduction;395
14.2;II. Basic Principles;397
14.3;III. Field Ion Microscope and Atom-Probe FIM;399
14.4;IV. Atomic Processes on Solid Surfaces;407
14.5;V. Atom-Probe Analyses;414
14.6;VI. Summary;420
14.7;References;420
15;Chapter 9. Ion-Induced X-Ray Emission;422
15.1;I. Introduction;422
15.2;II. Coulomb lonization;423
15.3;III. Proton-Induced X-Ray Emission (PIXE);427
15.4;IV. Heavy-Ion-Induced X-Ray Emission;435
15.5;References;441
16;Chapter 10. X-Ray Fluorescence Analysis;444
16.1;I. Introduction;444
16.2;II. Development of the Physics;448
16.3;III. Development of the Analytical Application;451
16.4;IV. Comparison to Other Analytical Techniques;456
16.5;V. X-Ray Fluorescence Analysis in Industry;458
16.6;VI. Conclusions;461
16.7;References;462
17;Chapter 11. Photoelectron and AugerSpectroscopy;464
17.1;I. Introduction;465
17.2;II. Description of the Processes;466
17.3;III. Experimental Considerations;479
17.4;IV. Applications;501
17.5;Acknowledgments;553
17.6;References;553
18;Chapter 12. Ion Implantation in Semiconductors;560
18.1;1. Introduction;465
18.2;II. Depth Distributions in Implanted and Annealed Samples;466
18.3;III. Implantation Damage;566
18.4;IV. Electrical Activity;575
18.5;V. Recoil Implantation;578
18.6;VI. Annealing of Disorder by Irradiation;581
18.7;VII. Summary;586
18.8;References;586
19;Chapter 13. Microfabrication;592
19.1;1. Introduction;592
19.2;II. Microfabrication Processes;593
19.3;III. Pattern Replication (Lithography);597
19.4;IV. Pattern Transfer;612
19.5;V. Discussion;620
19.6;References;623
20;Index;628