Buch, Englisch, 274 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 583 g
Buch, Englisch, 274 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 583 g
Reihe: IEEE Press Series on Biomedical Engineering
ISBN: 978-0-470-60193-8
Verlag: Wiley
By providing expositions to modeling principles, theories, computational solutions, and open problems, this reference presents a full scope on relevant biological phenomena, modeling frameworks, technical challenges, and algorithms.
- Up-to-date developments of structures of biomolecules, systems biology, advanced models, and algorithms
- Sampling techniques for estimating evolutionary rates and generating molecular structures
- Accurate computation of probability landscape of stochastic networks, solving discrete chemical master equations
- End-of-chapter exercises
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
List of Figures xiii
List of Tables xix
Foreword xxi
Acknowledgments xxiii
1 Geometric Models of Protein Structure and Function Prediction 1
1.1 Introduction 1
1.2 Theory and Model 2
1.2.1 Idealized Ball Model 2
1.2.2 Surface Models of Proteins 3
1.2.3 Geometric Constructs 4
1.2.4 Topological Structures 6
1.2.5 Metric Measurements 9
1.3 Algorithm and Computation 13
1.4 Applications 15
1.4.1 Protein Packing 15
1.4.2 Predicting Protein Functions from Structures 17
1.5 Discussion and Summary 20
References 22
Exercises 25
2 Scoring Functions for Predicting Structure and Binding of Proteins 29
2.1 Introduction 29
2.2 General Framework of Scoring Function and Potential Function 31
2.2.1 Protein Representation and Descriptors 31
2.2.2 Functional Form 32
2.2.3 Deriving Parameters of Potential Functions 32
2.3 Statistical Method 32
2.3.1 Background 32
2.3.2 Theoretical Model 33
2.3.3 Miyazawa--Jernigan Contact Potential 34
2.3.4 Distance-Dependent Potential Function 41
2.3.5 Geometric Potential Functions 45
2.4 Optimization Method 49
2.4.1 Geometric Nature of Discrimination 50
2.4.2 Optimal Linear Potential Function 52
2.4.3 Optimal Nonlinear Potential Function 53
2.4.4 Deriving Optimal Nonlinear Scoring Function 55
2.4.5 Optimization Techniques 55
2.5 Applications 55
2.5.1 Protein Structure Prediction 56
2.5.2 Protein--Protein Docking Prediction 56
2.5.3 Protein Design 58
2.5.4 Protein Stability and Binding Affinity 59
2.6 Discussion and Summary 60
2.6.1 Knowledge-Based Statistical Potential Functions 60
2.6.2 Relationship of Knowledge-Based Energy Functions and Further Development 64
2.6.3 Optimized Potential Function 65
2.6.4 Data Dependency of Knowledge-Based Potentials 66
References 67
Exercises 75
3 Sampling Techniques: Estimating Evolutionary Rates and Generating Molecular Structures 79
3.1 Introduction 79
3.2 Principles of Monte Carlo Sampling 81
3.2.1 Estimation Through Sampling from Target Distribution 81
3.2.2 Rejection Sampling 82
3.3 Markov Chains and Metropolis Monte Carlo Sampling 83
3.3.1 Properties of Markov Chains 83
3.3.2 Markov Chain Monte Carlo Sampling 85
3.4 Sequential Monte Carlo Sampling 87
3.4.1 Importance Sampling 87
3.4.2 Sequential Importance Sampling 87
3.4.3 Resampling 91
3.5 Applications 92
3.5.1 Markov Chain Monte Carlo for Evolutionary Rate Estimation 92
3.5.2 Sequentail Chain Growth Monte Carlo for Estimating Conformational Entropy of RNA Loops 95
3.6 Discussion and Summary 96
References 97
Exercises 99
4 Stochastic Molecular Networks 103
4.1 Introduction 103
4.2 Reaction System and Discrete Chemical Master Equation 104
4.3 Direct Solution of Chemical Master Equation 106
4.3.1 State Enumeration with Finite Buffer 106
4.3.2 Generalization and Multi-Buffer dCME Method 108
4.3.3 Calculation of Steady-State Probability Landscape 108
4.3.4 Calculation of Dynamically Evolving Probability Landscape 108
4.3.5 Methods for State Space Truncation for Simplification 109
4.4 Quantifying and Controlling Errors from State Space Truncation 111
4.5 Approximating Discrete Chemical Master Equation 114
4.5.1 Continuous Chemical Master Equation 114
4.5.2 Stochastic Differential Equation: Fokker—Planck Approach 114
4.5.3 Stochastic Differential Equation: Langevin Approach 116
4.5.4 Other Approximations 117
4.6 Stochastic Simulation 118
4.6.1 Reaction Probability 118
4.6.2 Reaction Trajectory 118
4.6.3 Probability of Reaction Trajectory 119
4.6.4 Stochastic Simulation Algorithm 119
4.7 App