D'Arrigo | Stable-Nanoemulsions | E-Book | sack.de
E-Book

E-Book, Englisch, 344 Seiten, Web PDF

D'Arrigo Stable-Nanoemulsions

Self-Assembly in Nature and Nanomedicine
1. Auflage 2003
ISBN: 978-0-08-054166-2
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

Self-Assembly in Nature and Nanomedicine

E-Book, Englisch, 344 Seiten, Web PDF

ISBN: 978-0-08-054166-2
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



This title is a greatly expanded and updated second edition of the original volume published by Elsevier in 1986. New material has been integrated with the original content in an organized and comprehensive manner.
Five new chapters have been included, which review over one and a half decades of research into lipid-coated microbubbles (LCM) and their medical applications. The new chapters contain much experimental data, which is examined in detail, along with relevant current literature.
This current edition builds on the original work in effectively filling the gap in the market for a comprehensive account of the surfactant stabilization of coated microbubbles.
- Presents updated results from extensive multidisciplinary research on coated microbubbles
- Greatly expanded and updated 2nd edition, with five new chapters
- Fills the gap for a comprehensive and up-to-date account of subject matter

D'Arrigo Stable-Nanoemulsions jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Cover;1
2;CONTENTS;14
3;Chapter 1. OCCURRENCE OF DILUTE GAS-IN-LIQUID EMULSIONS IN NATURAL WATERS;22
3.1;1.1. Practical Importance of Stable Microbubbles;23
3.2;1.2. Background Observations;32
3.3;1.3. Demonstration of Film-Stabilized Microbubbles in Fresh Water;37
3.4;1.4. Demonstration of Film-Stabilized Microbubbles in Sea Water;46
4;Chapter 2. EARLY WORK WITH AQUEOUS CARBOHYDRATE GELS;56
4.1;2.1. Development of the Agarose Gel Method for Monitoring Bubble Formation;56
4.2;2.2. Results from Dilute Electrolyte Additions and pH Changes in Agarose Gels;60
4.3;2.3. Results from Concentrated Electrolyte Additions and 1% Phenol in Agarose Gels;63
4.4;2.4. Detailed Comparison with Published Data in the Physicochemical Literature for Salting Out of Identified Nonionic Surfactants;71
4.5;2.5. Concluding Remarks;74
5;Chapter 3. COMPARISON OF AQUEOUS SOIL EXTRACTS WITH CARBOHYDRATE GELS;76
5.1;3.1. Functional Microbubble Residues in Soil and Agarose Powder;77
5.2;3.2. Adaptation of (Filtered) Aqueous Soil Extracts for Use with the Agarose Gel Method;78
5.3;3.3. Ninhydrin Effect on Bubble Formation in Commercial Agarose and Aqueous Soil Extracts;80
5.4;3.4. Photochemical Experiments Using Methylene Blue;82
5.5;3.5. 2-Hydroxy-5-Nitrobenzyl Bromide Experiments;85
5.6;3.6. Conclusions;87
6;Chapter 4. CHARACTERISTIC GLYCOPEPTIDE FRACTION OF NATURAL MICROBUBBLE SURFACTANT;88
6.1;4.1. Analytical Methods;88
6.2;4.2. Biochemical Results;96
6.3;4.3. Review of Natural-Product Literature and Possible Animal Sources of the Glycopeptide Fraction of Microbubble Surfactant;113
6.4;4.4. Concluding Remarks;118
7;Chapter 5. ECOLOGICAL CHEMISTRY OF MICROBUBBLE SURFACTANT;120
7.1;5.1. Analytical Methods;121
7.2;5.2. Experimental Results;123
7.3;5.3. Biochemical/Geochemical Considerations;130
8;Chapter 6. SURFACE PROPERTIES OF MICROBUBBLE-SURFACTANT MONOLAYERS;136
8.1;6.1. Modified Langmuir Trough Method;136
8.2;6.2. Surface Pressure-Area (p-A) Curves;140
8.3;6.3. Selective Desorption from Compressed Monolayers;143
8.4;6.4. Bonding within Compressed Microbubble- Surfactant Monolayers;145
8.5;6.5. Glycopeptide:Acyl Lipid Area Ratio and Association of Complexes within Monolayers;147
8.6;6.6. Conclusions;148
9;Chapter 7. STRUCTURE OF PREDOMINANT SURFACTANT COMPONENTS STABILIZING NATURAL MICROBUBBLES;150
9.1;7.1. 1H-NMR Spectroscopy of Isolated Microbubble Surfactant;150
9.2;7.2. Langmuir-Trough Measurements and Collection of Monolayers;153
9.3;7.3. 1H-NMR Spectroscopy of Compressed Monolayer Material;154
9.4;7.4. Chemical Similarities between Microbubble-Surfactant Monolayers and Lipid Surface Films at the Air/Sea Interface;156
10;Chapter 8. STABLE MICROBUBBLES IN PHYSIOLOGICAL FLUIDS: COMPETING HYPOTHESES;158
10.1;8.1. Comparison of Different Decompression Schedules: Correlation between Bubble Production in Agarose Gels and Incidence of Decompression Sickness;159
10.2;8.2. Comparison of Cavitation Thresholds for Agarose Gels and Vertebrate Tissues;164
10.3;8.3. Contradictory Findings;165
10.4;8.4. Homogeneous Nucleation Hypothesis;168
10.5;8.5. Clinical Use of Injected Gas Microbubbles: Echocardiography; Potential for Cancer Detection;169
11;Chapter 9. CONCENTRATED GAS-IN-LIQUID EMULSIONS IN ARTIFICIAL MEDIA. I. DEMONSTRATION BY LASER-LIGHT SCATTERING;172
11.1;9.1. Physiological Hints for the Production of Artificial Microbubbles;172
11.2;9.2. Laser-Based Flow Cytometry and Forward- Angle Light Scattering;174
11.3;9.3. Synthetic Microbubble Counts versus the Control;174
11.4;9.4. Microbubble Flotation with Time;177
11.5;9.5. Microbubble Persistence with Time;180
12;Chapter 10. CONCENTRATED GAS-IN-LIQUID EMULSIONS IN ARTIFICIAL MEDIA. II. CHARACTERIZATION BY PHOTON CORRELATION SPECTROSCOPY;182
12.1;10.1. Brownian Motion and Autocorrelation Analysis of Scattered Light Intensity;182
12.2;10.2. Background Observations on Micellar Growth;184
12.3;10.3. Solubilization of Gases in Micelles;188
12.4;10.4. Size Distribution of Synthetic Microbubbles: Formation, Coalescence, Fission, and Disappearance;190
13;Chapter 11. CONCENTRATED GAS-IN-LIQUID EMULSIONS IN ARTIFICIAL MEDIA. III. REVIEW OF MOLECULAR MECHANISMS INVOLVED IN MICROBUBBLE STABILIZATION;220
13.1;11.1. Microbubble Longevity and Interaggregate Interactions;220
13.2;11.2. Molecular Packing within the Microbubble's Surfactant Monolayer;220
13.3;11.3. Repulsive Head-Group Interactions and Monolayer Curvature;221
13.4;11.4. Microbubble Fission, Collapse, and Re-emergence;222
14;Chapter 12. TARGETED IMAGING OF TUMORS, AND TARGETED CAVITATION THERAPY, WITH LIPID-COATED MICROBUBBLES (L.C.M.);226
14.1;12.1. Description of the LCM Agent (Filmix®);226
14.2;12.2. Targeted Ultrasonic Imaging of Tumors with LCM as a Contrast Agent;228
14.3;12.3. Tumor Detection versus Tumor Therapy with LCM;234
14.4;12.4. Use of LCM as a Targeted, Susceptibility-Based, MRI Contrast Agent for Tumors;236
14.5;12.5. LCM-Facilitated Ultrasonic Therapy of Tumors;238
15;Chapter 13. TARGETED DRUG-DELIVERY THERAPY OF TUMORS USING L.C.M.;242
15.1;13.1. Internalization of LCM by Tumor Cells In Vivo and In Vitro;242
15.2;13.2. Evaluation of LCM as a Delivery Agent of Paclitaxel (Taxo®) for Tumor Therapy;252
16;Chapter 14. PROPOSED MECHANISM OF SELECTIVE L.C.M. UPTAKE BY TUMOR CELLS: ROLE OF LIPOPROTEIN RECEPTOR-MEDIATED ENDOCYTIC PATHWAYS;264
16.1;14.1. Low-Density Lipoprotein (LDL) Receptors, on Tumor Cells, and LCM;264
16.2;14.2. Multiligand Lipoprotein Receptors 14.2.1. LDL receptor-related protein (LRP), on tumor cells, and LCM;267
16.3;Chapter 15. ENDOCYTOTIC EVENTS VERSUS PARTICLE SIZE: MULTIDISCIPLINARY ANALYSES DEMONSTRATE L.C.M. SIZES ARE MOSTLY SUBMICRON;276
16.4;15.1. Chylomicron Remnant-Like Particle Sizes;276
16.5;15.2. Comparison with LCM Sizes: Proportion of LCM Population Between 0.1-0.2 µm;277
17;REFERENCES;282
18;SUBJECT INDEX;338



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.