Danielsson | Financial Risk Forecasting | E-Book | sack.de
E-Book

E-Book, Englisch, 296 Seiten, E-Book

Reihe: Wiley Finance Series

Danielsson Financial Risk Forecasting

The Theory and Practice of Forecasting Market Risk with Implementation in R and Matlab
1. Auflage 2011
ISBN: 978-1-119-97711-7
Verlag: John Wiley & Sons
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

The Theory and Practice of Forecasting Market Risk with Implementation in R and Matlab

E-Book, Englisch, 296 Seiten, E-Book

Reihe: Wiley Finance Series

ISBN: 978-1-119-97711-7
Verlag: John Wiley & Sons
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Financial Risk Forecasting is a complete introduction topractical quantitative risk management, with a focus on marketrisk. Derived from the authors teaching notes and years spenttraining practitioners in risk management techniques, it bringstogether the three key disciplines of finance, statistics andmodeling (programming), to provide a thorough grounding in riskmanagement techniques.
Written by renowned risk expert Jon Danielsson, the book beginswith an introduction to financial markets and market prices,volatility clusters, fat tails and nonlinear dependence. It thengoes on to present volatility forecasting with both univatiate andmultivatiate methods, discussing the various methods used byindustry, with a special focus on the GARCH family of models. Theevaluation of the quality of forecasts is discussed in detail.Next, the main concepts in risk and models to forecast risk arediscussed, especially volatility, value-at-risk and expectedshortfall. The focus is both on risk in basic assets such as stocksand foreign exchange, but also calculations of risk in bonds andoptions, with analytical methods such as delta-normal VaR andduration-normal VaR and Monte Carlo simulation. The book then moveson to the evaluation of risk models with methods like backtesting,followed by a discussion on stress testing. The book concludes byfocussing on the forecasting of risk in very large and uncommonevents with extreme value theory and considering the underlyingassumptions behind almost every risk model in practical use -that risk is exogenous - and what happens when thoseassumptions are violated.
Every method presented brings together theoretical discussionand derivation of key equations and a discussion of issues inpractical implementation. Each method is implemented in both MATLABand R, two of the most commonly used mathematical programminglanguages for risk forecasting with which the reader can implementthe models illustrated in the book.
The book includes four appendices. The first introduces basicconcepts in statistics and financial time series referred tothroughout the book. The second and third introduce R and MATLAB,providing a discussion of the basic implementation of the softwarepackages. And the final looks at the concept of maximum likelihood,especially issues in implementation and testing.
The book is accompanied by a website - www.financialriskforecasting.com- which features downloadable code as used in the book.

Danielsson Financial Risk Forecasting jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Preface.
Acknowledgments.
Abbreviations.
Notation.
1 Financial markets, prices and risk.
1.2 S&P 500 returns.
1.3 The stylized facts of financial returns.
1.4 Volatility.
1.5 Nonnormality and fat tails.
1.6 Identification of fat tails.
1.7 Nonlinear dependence.
1.8 Copulas.
1.9 Summary.
2 Univariate volatility modeling.
2.1 Modeling volatility.
2.2 Simple volatility models.
2.3 GARCH and conditional volatility.
2.4 Maximum likelihood estimation of volatility models.
2.5 Diagnosing volatility models.
2.6 Application of ARCH and GARCH.
2.7 Other GARCH-type models.
2.8 Alternative volatility models.
2.9 Summary.
3 Multivariate volatility models.
3.1 Multivariate volatility forecasting.
3.2 EWMA.
3.3 Orthogonal GARCH.
3.4 CCC and DCC models.
3.5 Estimation comparison.
3.6 Multivariate extensions of GARCH.
3.7 Summary.
4 Risk measures.
4.1 Defining and measuring risk.
4.2 Volatility.
4.3 Value-at-risk.
4.4 Issues in applying VaR.
4.5 Expected shortfall.
4.6 Holding periods, scaling and the square root of time.
4.7 Summary.
5 Implementing risk forecasts.
5.1 Application.
5.2 Historical simulation.
5.3 Risk measures and parametric methods.
5.4 What about expected returns?
5.5 VaR with time-dependent volatility.
5.6 Summary.
6 Analytical value-at-risk for options and bonds.
6.1 Bonds.
6.2 Options.
6.3 Summary.
7 Simulation methods for VaR for options and bonds.
7.1 Pseudo random number generators.
7.2 Simulation pricing.
7.3 Simulation of VaR for one asset.
7.4 Simulation of portfolio VaR.
7.5 Issues in simulation estimation.
7.6 Summary.
8 Backtesting and stress testing.
8.1 Backtesting.
8.2 Backtesting the S&P 500.
8.3 Significance of backtests.
8.4 Expected shortfall backtesting.
8.5 Problems with backtesting.
8.6 Stress testing.
8.7 Summary.
9 Extreme value theory.
9.1 Extreme value theory.
9.2 Asset returns and fat tails.
9.3 Applying EVT.
9.4 Aggregation and convolution.
9.5 Time dependence.
9.6 Summary.
10 Endogenous risk.
10.1 The Millennium Bridge.
10.2 Implications for financial risk management.
10.3 Endogenous market prices.
10.4 Dual role of prices.
10.5 Summary.
APPENDICES.
A Financial time series.
A.1 Random variables and probability density functions.
A.2 Expectations and variance.
A.3 Higher order moments.
A.4 Examples of distributions.
A.5 Basic time series concepts.
A.6 Simple time series models.
A.7 Statistical hypothesis testing.
B An introduction to R.
B.1 Inputting data.
B.2 Simple operations.
B.3 Distributions.
B.4 Time series.
B.5 Writing functions in R.
B.6 Maximum likelihood estimation.
B.7 Graphics.
C An introduction to Matlab.
C.1 Inputting data.
C.2 Simple operations.
C.3 Distributions.
C.3.1 Normality tests.
C.4 Time series.
C.5 Basic programming and M-files.
C.6 Maximum likelihood.
C.7 Graphics.
D Maximum likelihood.
D.1 Likelihood functions.
D.2 Optimizers.
D.3 Issues in ML estimation.
D.4 Information matrix.
D.5 Properties of maximum likelihood estimators.
D.6 Optimal testing procedures.
Bibliography.
Index.


Jón Daníelsson has a PhD in the economics of financial markets and is a reader in finance at the London School of Economics. His research interests include financial stability, extreme market movements, risk, market liquidity and financial crisis. He has published extensively in both academic and practitioner journals, has consulted with a variety of private sector and public institutions, frequently gives executive education courses and has presented his work in a number of universities and institutions. In addition, he has been a frequent commentator of issues in financial markets in the media, appearing on CNN, the BBC, and many other TV and radio stations, with comments and op-ed pieces in newspapers like the Financial Times.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.