Damper | Data-Driven Techniques in Speech Synthesis | Buch | 978-0-412-81750-2 | sack.de

Buch, Englisch, 316 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1440 g

Reihe: Telecommunications Technology & Applications Series

Damper

Data-Driven Techniques in Speech Synthesis


2001
ISBN: 978-0-412-81750-2
Verlag: Springer US

Buch, Englisch, 316 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1440 g

Reihe: Telecommunications Technology & Applications Series

ISBN: 978-0-412-81750-2
Verlag: Springer US


This first review of a new field covers all areas of speech synthesis from text, ranging from text analysis to letter-to-sound conversion. At the leading edge of current research, the concise and accessible book is written by well respected experts in the field.

Damper Data-Driven Techniques in Speech Synthesis jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1 Learning About Speech from Data: Beyond NETtalk.- 1.1 Introduction.- 1.2 Architecture of a TTS System.- 1.3 Automatic Pronunciation Generation.- 1.4 Prosody.- 1.5 The Synthesis Module.- 1.6 Conclusion.- 2 Constructing High-Accuracy Letter-to-Phoneme Rules with Machine Learning.- 2.1 Introduction.- 2.2 The Nettalk Approach.- 2.3 High-Performance ML Approach.- 2.4 Evaluation of Pronunciations.- 2.5 Conclusions.- 3 Analogy, the Corpus and Pronunciation.- 3.1 Introduction.- 3.2 Why Adopt a Psychological Approach?.- 3.3 The Corpus as a Resource.- 3.4 The Sullivan and Damper Model.- 3.5 Parallels with Optimality Theory.- 3.6 Implementation.- 3.7 Corpora.- 3.8 Performance Evaluation.- 3.9 Future Challenges.- 4 A Hierarchical Lexical Representation for Pronunciation Generation.- 4.1 Introduction.- 4.2 Previous Work.- 4.3 Hierarchical Lexical Representation.- 4.4 Generation Algorithm.- 4.5 Evaluation Criteria.- 4.6 Results on Letter-to-Sound Generation.- 4.7 Error Analyses.- 4.8 Evaluating the Hierarchical Representation.- 4.9 Discussions and Future Work.- 5 English Letter-Phoneme Conversion by Stochastic Transducers.- 5.1 Introduction.- 5.2 Modelling Transduction.- 5.3 Stochastic Finite-State Transducers.- 5.4 Inference of Letter-Phoneme Correspondences.- 5.5 Translation.- 5.6 Results.- 5.7 Conclusions.- 6 Selection of Multiphone Synthesis Units and Grapheme-to-Phoneme Transcription using Variable-Length Modeling of Strings.- 6.1 Introduction.- 6.2 Multigram Model.- 6.3 Multiphone Units for Speech Synthesis.- 6.4 Learning Letter-to-Sound Correspondences.- 6.5 General Discussion and Perspectives.- 7 TreeTalk: Memory-Based Word Phonemisation.- 7.1 Introduction.- 7.2 Memory-Based Phonemisation.- 7.3 tribl and TreeTalk.- 7.4 Modularity and Linguistic Representations.- 7.5 Conclusion.- 8 Learnable Phonetic Representations in a Connectionist TTS System — I: Text to Phonetics.- 8.1 Introduction.- 8.2 Problem Background.- 8.3 Data Inputs and Outputs to Module M1.- 8.4 Detailed Architecture of the Text-to-Phonetics Module.- 8.5 Model Selection.- 8.6 Results.- 8.7 Conclusions and Further Work.- 9 Using the Tilt Intonation Model: A Data-Driven Approach.- 9.1 Background.- 9.2 Tilt Intonation Model.- 9.3 Training Tilt Models.- 9.4 Experiments and Results.- 9.5 Conclusion.- 10 Estimation of Parameters for the Klatt Synthesizer from a Speech Database.- 10.1 Introduction.- 10.2 Global Parameter Settings.- 10.3 Synthesis of Vowels, Diphthongs and Glides.- 10.4 Stop Consonants (and Voiceless Vowels).- 10.5 Estimation of Fricative Parameters.- 10.6 Other Sounds.- 10.7 Application: A Database of English Monosyllables.- 10.8 Conclusion.- 11 Training Accent and Phrasing Assignment on Large Corpora.- 11.1 Introduction.- 11.2 Intonational Model.- 11.3 Classification and Regression Trees.- 11.4 Predicting Pitch Accent Placement.- 11.5 Predicting Phrase Boundary Location.- 11.6 Conclusion.- 12 Learnable Phonetic Representations in a Connectionist TTS System — II: Phonetics to Speech.- 12.1 Introduction.- 12.2 Architecture of Phonetics-to-Speech Module.- 12.3 Training and Alignment.- 12.4 Phonetics-to-Speech Results.- 12.5 Conclusions and Further Work.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.