Damiani / Maciaszek / Spanoudakis | Evaluation of Novel Approaches to Software Engineering | Buch | 978-3-030-40222-8 | sack.de

Buch, Englisch, Band 1172, 403 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 628 g

Reihe: Communications in Computer and Information Science

Damiani / Maciaszek / Spanoudakis

Evaluation of Novel Approaches to Software Engineering

14th International Conference, ENASE 2019, Heraklion, Crete, Greece, May 4-5, 2019, Revised Selected Papers
1. Auflage 2020
ISBN: 978-3-030-40222-8
Verlag: Springer International Publishing

14th International Conference, ENASE 2019, Heraklion, Crete, Greece, May 4-5, 2019, Revised Selected Papers

Buch, Englisch, Band 1172, 403 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 628 g

Reihe: Communications in Computer and Information Science

ISBN: 978-3-030-40222-8
Verlag: Springer International Publishing


This book constitutesselected, revised and extended papers of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering, ENASE 2019, held in Heraklion, Crete, Greece, in May 2019.

The 19 revised full papers presented were carefully reviewed and selected from 102 submissions. The papers included in this book contribute to the understanding of relevant trends of current research on novel approaches to software engineering for the development and maintenance of systems and applications, specically with relation to: model-driven software engineering, requirements engineering, empirical software engineering, service-oriented software engineering, business process management and engineering, knowledge management and engineering, reverse software engineering, software process improvement, software change and configuration management, software metrics, software patterns and refactoring, application integration, software architecture, cloudcomputing, and formal methods.


Damiani / Maciaszek / Spanoudakis Evaluation of Novel Approaches to Software Engineering jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Using Stanford Core NLP Capabilities for Semantic Information Extraction from Textual Descriptions.- An Overview of Ways of Discovering Cause-effect Relations in Text by using Natural Language Processing.- From Requirements to Automated Acceptance Tests with the RSL Language.- Experimenting with Liveness in Cloud Infrastructure Management.- Live Software Development Environment Using Virtual Reality: A Prototype and Experiment.- Model-Based Risk Analysis and Evaluation Using CORAS and CVSS.- Towards GDPR Compliant Software Design: A Formal Framework for Analyzing System Models.- Evaluation of Software Product Quality Metrics.- Model-Driven Development Applied to Mobile Health and Clinical Scores.- Model-driven Software Development Combined with Semantic Mutation of UML State Machines.- Model-driven Automatic Question Generation for a Gamied Clinical Guideline Training System.- New Method to Reduce Verication Time of Reconfigurable Real-time Systems using R-TNCESs Formalism.- On Improving R-TNCES Rebuilding for Reconfigurable Real-time Systems.- Towards the Efficient Use of Dynamic Call Graph Generators of Node.js Applications.- Comparison of Computer Vision Approaches in Application to the Electricity and Gas Meter Reading.- Expanding Tracing Capabilities Using Dynamic Tracing Data.- Automated Software Measurement Strategies Elaboration using Unsupervised Learning Data Analysis.- Agile Scaled Steps of Doneness: A Standardized Procedure to Conceptualizing and Completing User Stories across Scrum Teams and Industries.- Indoor Localization Techniques Within a Home Monitoring Platform.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.