D'Ambrosio / Smets / Bonissone | Uncertainty in Artificial Intelligence | E-Book | sack.de
E-Book

E-Book, Englisch, 445 Seiten, Web PDF

D'Ambrosio / Smets / Bonissone Uncertainty in Artificial Intelligence

Proceedings of the Seventh Conference on Uncertainty in Artificial Intelligence, UCLA, at Los Angeles, July 13-15, 1991
1. Auflage 2014
ISBN: 978-1-4832-9856-6
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

Proceedings of the Seventh Conference on Uncertainty in Artificial Intelligence, UCLA, at Los Angeles, July 13-15, 1991

E-Book, Englisch, 445 Seiten, Web PDF

ISBN: 978-1-4832-9856-6
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



Uncertainty Proceedings 1991

D'Ambrosio / Smets / Bonissone Uncertainty in Artificial Intelligence jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Uncertainty in Artificial Intelligence;4
3;Copyright Page;5
4;Table of Contents;8
5;Preface;6
6;Chapter 1. ARCO1: An Application of Belief Networks to the Oil Market;12
6.1;Abstract;12
6.2;1 Introduction;12
6.3;2 Domain Specifics;12
6.4;3 Model Variables;13
6.5;4 Scenarios;14
6.6;5 Forecasts;15
6.7;6 Conclusions;16
6.8;7 Acknowledgements;17
6.9;8 References;17
7;Chapter 2. "Conditional Inter-Causally Independent" node distributions, a property of "noisy-or" models;20
7.1;Abstract;20
7.2;1 EVIDENCE NODES THAT ARE COMMON TO MULTIPLE PARENTS;20
7.3;2 CONSTRUCTIVE SOLUTION OF THE BINARY VARIABLE INTER-CAUSAL DEPENDENCY;25
7.4;3 DISCUSSION;27
7.5;Acknowledgements;27
7.6;References;27
8;Chapter 3. Combining Multiple-valued Logics in Modular Expert Systems;28
8.1;Abstract;28
8.2;1 INTRODUCTION;28
8.3;2 ENTAILMENT SYSTEMS;29
8.4;3 A CLASS OF MULTIPLE-VALUED LOGICS FOR THE UNCERTAINTY MANAGEMENT IN RULE-BASED EXPERT SYSTEMS;30
8.5;4 INFERENCE PRESERVING MAPS BETWEEN MV-LOGICS;31
8.6;5 CONCLUSIONS AND FUTURE WORK;35
8.7;Acknowledgements;36
8.8;References;36
9;Chapter 4. Constraint Propagation with Imprecise Conditional Probabilities;37
9.1;Abstract;37
9.2;1 INTRODUCTION;37
9.3;2 STATEMENT OF THE PROBLEM;38
9.4;3 A LINEAR PROGRAMMING METHOD;39
9.5;4 GENERALIZED BAYES' THEOREM;39
9.6;5 LOCAL INFERENCE RULES;40
9.7;6 A CONSTRAINT PROPAGATION BASED ON INFERENCE RULES;41
9.8;7 AN EXAMPLE;42
9.9;8 CONJUNCTION AND DISJUNCTION;42
9.10;9 INDEPENDENCE ASSUMPTIONS;43
9.11;10 CONCLUSION;44
9.12;Acknowledgements;45
9.13;References;45
10;Chapter 5. BAYESIAN NETWORKS APPLIED TO THERAPY MONITORING;46
10.1;Abstract;46
10.2;1. INTRODUCTION;46
10.3;2. HIGH-LEVEL VIEW OF THE MODEL;47
10.4;3. INFERENCE;48
10.5;4. COMPUTING THE INFERENCES VIA STOCHASTIC SIMULATION;49
10.6;5. SPECIFIC MODEL FOR CYTOTOXIC CHEMOTHERAPY MONITORING IN BREAST CANCER;49
10.7;7. CONCLUSIONS;52
10.8;Acknowledgements;53
10.9;References;53
11;Chapter 6. Some Properties of Plausible Reasoning;55
11.1;Abstract;55
11.2;1 INTRODUCTION;55
11.3;2 NOTATION;56
11.4;3 THEORY;57
11.5;4 EXAMPLES;59
11.6;5 CONCLUSION;60
11.7;References;61
12;Chapter 7. Theory Refinement on Bayesian Networks;63
12.1;Abstract;63
12.2;1 Introduction;63
12.3;2 Bayesian Networks;64
12.4;3 Partial Bayesian networks;65
12.5;4 Representing alternative Bayesian networks;66
12.6;5 Theory Refinement;67
12.7;6 Extensions;69
12.8;7 Conclusion;70
12.9;Acknowledgements;70
12.10;References;70
13;Chapter 8. COMBINATION OF UPPER AND LOWER PROBABILITIES;72
13.1;Abstract;72
13.2;1 INTRODUCTION;72
13.3;2 'A PRIORI' INFORMATION;73
13.4;3 EVIDENTIAL INFORMATION;74
13.5;4 COMBINATION OF 'A PRIORI AND EVIDENTIAL INFORMATION;76
13.6;Acknowledgments;79
13.7;References;79
14;Chapter 9. A Probabilistic Analysis of Marker-Passing Techniques for Plan-Recognition;80
14.1;Abstract;80
14.2;1 Introduction;80
14.3;2 Probabilistic Schema Evaluation;81
14.4;3 Probabilistic Schema Selection;81
14.5;4 Path Calculations;84
14.6;5 Results;86
14.7;Acknowledgements;87
14.8;References;87
15;Chapter 10. Symbolic Probabilistic Inference with Continuous Variables;88
15.1;Abstract;88
15.2;1 Introduction;88
15.3;2 Overview of the SPI Algorithm;89
15.4;3 The SPI with Continuous Variables Algorithm;90
15.5;4 Conclusion;92
15.6;References;92
16;Chapter 11. Symbolic Probabilistic Inference with Evidence Potential;93
16.1;Abstract;93
16.2;1 Introduction;93
16.3;2 Evidence Potential Algorithm;94
16.4;3 Symbolic Inference with Evidence Potential;94
16.5;4 Examples;95
16.6;5 Conclusion;96
16.7;References;96
17;Chapter 12. A Bayesian Method for Constructing Bayesian Belief Networks from Databases;97
17.1;Abstract;97
17.2;1 INTRODUCTION;97
17.3;2 METHODS;98
17.4;3 PRELIMINARY RESULTS;103
17.5;4 SUMMARY OF THE LEARNING METHOD AND RELATED WORK;103
17.6;Acknowledgements;104
17.7;References;104
18;Chapter 13. Local Expression Languages for Probabilistic Dependence: a preliminary report;106
18.1;Abstract;106
18.2;1 Introduction;106
18.3;2 Overview of SPI;106
18.4;3 Local Expression Languages for Probabilistic Knowledge;108
18.5;4 Discussion;112
18.6;5 Conclusion;112
18.7;Acknowledgements;113
18.8;References;113
19;Chapter 14. Symbolic Decision Theory and Autonomous Systems;114
19.1;Abstract;114
19.2;1 INTRODUCTION;114
19.3;2 SYMBOLIC DECISION MAKING UNDER UNCERTAINTY;115
19.4;3 AUTONOMOUS DECISION MAKING UNDER UNCERTAINTY;118
19.5;Acknowledgements;121
19.6;References;121
20;Chapter 15. A REASON MAINTENANCE SYSTEM DEALING WITH VAGUE DATA;122
20.1;Abstract;122
20.2;INTRODUCTION;122
20.3;MANY-VALUED LOGICS AND RESOLUTION;122
20.4;DEFINITION OF A FUZZY TRUTH MAINTENANCE SYSTEM;124
20.5;CONCLUSION;127
20.6;Acknowledgements;127
20.7;References;127
21;Chapter 16. Advances in Probabilistic Reasoning;129
21.1;Abstract;129
21.2;1 Introduction;129
21.3;2 Representation and Inference;129
21.4;3 Knowledge Acquisition/Representation;133
21.5;4 Generalized Similarity Networks;135
21.6;5 Summary;136
21.7;References;137
22;Chapter 17. Probability Estimation in face of Irrelevant Information;138
22.1;Abstract;138
22.2;1 INTRODUCTION;138
22.3;2 THE UNDERLYING MODEL;139
22.4;3 THE ESTIMATION PROBLEM;140
22.5;4 JUSTIFICATION AND EXTENSIONS;142
22.6;5 COMPARISON TO OTHER WORK;143
22.7;6 CONCLUSION;144
22.8;Acknowledgments;144
22.9;References;144
23;Chapter 18. An Approximate Nonmyopic Computation for Value of Information;146
23.1;Abstract;146
23.2;1 INTRODUCTION;146
23.3;2 VALUE-OF-INFORMATION COMPUTATIONS FOR DIAGNOSIS;146
23.4;3 MYOPIC ANALYSIS;147
23.5;4 NONMYOPIC ANALYSIS;149
23.6;5 VALUE OF INFORMATION FOR A SUBSET OF EVIDENCE;149
23.7;6 RELAXATION OF THE ASSUMPTIONS;150
23.8;7 SUMMARY AND CONCLUSIONS;152
23.9;Acknowledgments;152
23.10;References;152
24;Chapter 19. Search-based Methods to Bound Diagnostic Probabilities in Very Large Belief Nets;153
24.1;Abstract;153
24.2;1 INTRODUCTION;153
24.3;2 QMR AND INTERNIST;154
24.4;3 QMR-BN: A PROBABILISTIC INTERPRETATION OF QMR;154
24.5;4 INFERENCE ALGORITHMS;155
24.6;5 NOTATION;156
24.7;6 RELATIVE PROBABILITY AND MARGINAL EXPLANATORY POWER;156
24.8;7 NEGATIVE PRODUCT SYNERGY AND THE MEP THEOREM;156
24.9;8 BOUNDS ON THE PROBABILITY OF EXTENSIONS;157
24.10;9 SEARCH METHOD;158
24.11;10 OBTAINING ABSOLUTE PROBABILITIES;158
24.12;11 PERFORMANCE OF TOPN;159
24.13;CONCLUSIONS;160
24.14;Acknowledgements;160
24.15;References;160
25;Chapter 20. Chapter Time-Dependent Utility and Action Under Uncertainty;162
25.1;Abstract;162
25.2;1 INTRODUCTION;162
25.3;2 A LIMITED REASONER;162
25.4;3 TIME-DEPENDENT UTILITY;164
25.5;4 PROTOS IN ACTION;166
25.6;5 SUMMARY;168
25.7;Acknowledgments;169
25.8;References;169
26;Chapter 21. Non-monotonic Reasoning and the Reversibility of Belief Change;170
26.1;Abstract;170
26.2;1 INTRODUCTION;170
26.3;2 BELIEF CHANGE AND INFERENCE;170
26.4;3 SEMANTICS FOR BELIEF CHANGE;171
26.5;4 ITERATED BELIEF CHANGE AND REVERSIBILITY;172
26.6;5 DISCUSSION;174
26.7;Acknowledgements;174
26.8;References;174
27;Chapter 22. Belief and Surprise - A Belief-Function Formulation;176
27.1;Abstract;176
27.2;1 INTRODUCTION;176
27.3;2 BELIEF FUNCTIONS AS A GENERAL FORMALIZATION MECHANISM;178
27.4;3 A CASE STUDY;181
27.5;4 DISCUSSION;182
27.6;5 CONCLUSION;183
27.7;Acknowledgements;183
27.8;Appendix - logical formulas and subsets of ;183
27.9;References;184
28;Chapter 23. Evidential Reasoning in a Categorial Perspective: Conjunction and Disjunction of Belief Functions;185
28.1;Abstract;185
28.2;0 INTRODUCTION;185
28.3;1 FROM THE DYNAMICS OF BELIEFS TO CATEGORIES OR ... VICE VERSA;186
28.4;2 CATEGORIES OF "BELIEFS";187
28.5;3 DISJUNCTIONS AND CONJUNCTIONS;189
28.6;4 COPRODUCTS AND CONJUNCTIONS;189
28.7;5 PRODUCTS AND DISJUNCTIONS;190
28.8;6 SEPARABLE BELIEF FUNCTIONS;191
28.9;7 CONCLUSIONS;191
28.10;Acknowledgments;192
28.11;References;192
29;Chapter 24. Reasoning with Mass Distributions;193
29.1;Abstract;193
29.2;1 INTRODUCTION;193
29.3;2 REPRESENTING KNOWLEDGE WITH MASS DISTRIBUTIONS;193
29.4;3 THE CONCEPT OF SPECIALIZATION;195
29.5;4 SPECIALIZATION MATRICES;196
29.6;5 CONCLUSIONS;198
30;Chapter 25. A Logic of Graded Possibility and Certainty Coping with Partial Inconsistency;199
30.1;ABSTRACT;199
30.2;1 INTRODUCTION;199
30.3;2 POSSIBILISTIC LOGIC : LANGUAGE AND SEMANTICS;200
30.4;3 AUTOMATED DEDUCTION IN POSSIBILISTIC LOGIC;203
30.5;CONCLUSION;206
30.6;Acknowledgements;206
30.7;References;206
31;Chapter 26. Conflict and Surprise: Heuristics for Model Revision;208
31.1;Abstract;208
31.2;1 INTRODUCTION;208
31.3;2 BACKGROUND;208
31.4;3 THEORETICAL FRAMEWORK;210
31.5;4 REBUTTALS;212
31.6;5 RARE CASES;214
31.7;6 DISCUSSION;214
31.8;Acknowledgements;215
31.9;References;215
32;Chapter 27. Reasoning under Uncertainty: Some Monte Carlo Results;216
32.1;Abstract;216
32.2;1 INTRODUCTION;216
32.3;2 METHOD;216
32.4;3 RESULTS;217
32.5;4 DISCUSSION;221
32.6;References;222
33;Chapter 28. Representation Requirements for Supporting Decision Model Formulation;223
33.1;Abstract;223
33.2;1 Introduction;223
33.3;2 An Example;224
33.4;3 The Decision Making Process;224
33.5;4 Summary of Inference Patterns and Representation Requirements;226
33.6;5 A Representation Design;227
33.7;6 Supporting General Inferences;228
33.8;7 Related Work;229
33.9;8 Discussion and Conclusion;229
33.10;Acknowledgments;230
33.11;References;230
34;Chapter 29. A Language for Planning with Statistics;231
34.1;Abstract;231
34.2;1 INTRODUCTION;231
34.3;2 KNOWLEDGE REPRESENTATION;232
34.4;3 INFERENCE;233
34.5;4 PLANNING;235
34.6;5 CONCLUSION;237
34.7;Acknowledgments;238
34.8;References;238
35;Chapter 30. A Modification to Evidential Probability;239
35.1;Abstract;239
35.2;1 Overview of the Problem;239
35.3;2 The Proposed Solution;240
35.4;3 Conclusions;242
35.5;Acknowledgments;242
35.6;References;242
36;Chapter 31. Investigation of Variances in Belief Networks;243
36.1;Abstract;243
36.2;1 INTRODUCTION;243
36.3;2 PRELIMINARY ASSUMPTIONS;245
36.4;3 DETERMINING THE VARIANCES IN INFERRED PROBABILITIES;246
36.5;4 OBTAINING AN UPPERBOUND FOR THE PRIOR VARIANCES;249
36.6;5 FUTURE RESEARCH;252
36.7;References;252
37;Chapter 32. A Sensitivity Analysis of Pathfinder: A Follow-up Study;253
37.1;Abstract;253
37.2;1 INTRODUCTION;253
37.3;2 DETAILS OF THE ANALYSIS;254
37.4;3 THE INITIAL STUDY;254
37.5;4 THE FOLLOW-UP STUDY;255
37.6;5 CONCLUSIONS;257
37.7;Acknowledgments;259
37.8;References;259
38;Chapter 33. Non-monotonic Negation in Probabilistic Deductive Databases;260
38.1;Abstract;260
38.2;1 Introduction;260
38.3;2 Syntax and Uses of General Probabilistic Logic Programs;261
38.4;3 Background: Fixpoint Theory for Pf-programs;262
38.5;4 Stability of Formula Functions;263
38.6;5 Stable Classes of Formula Functions;264
38.7;6 Discussion;265
38.8;7 Conclusions;266
38.9;Acknowledgements;266
38.10;References;266
39;Chapter 34. Management of Uncertainty in the Multi-Level Monitoring and Diagnosis of the Time of Flight Scintillation Array;268
39.1;Abstract;268
39.2;1 INTRODUCTION;268
39.3;2 BACKGROUND LITERATURE;269
39.4;3 TIME OF FLIGHT SCINTILLATION ARRAY;269
39.5;4 SYSTEM ARCHITECTURE;269
39.6;5 MANAGEMENT OFUNCERTAINTY AT THE MONITORING LEVEL;270
39.7;6 MANAGEMENT OF UNCERTAINTY AT THE STRUCTURAL REASONING LEVEL;271
39.8;7 MANAGEMENT OF UNCERTAINTY AT THE BEHAVIORAL REASONING LEVEL;271
39.9;8 IMPLEMENTATION;272
39.10;9 SUMMARY;272
39.11;Acknowledgements;273
39.12;References;273
40;Chapter 35. Integrating Probabilistic Rules into Neural Networks: A Stochastic EM Learning Algorithm;275
40.1;Abstract;275
40.2;1 INTRODUCTION;275
40.3;2 PROBABILISTIC NETWORKS;276
40.4;3 MAXIMUM LIKELIHOOD ESTIMATION;277
40.5;4 THE STOCHASTIC EM-ALGORITHM;278
40.6;5 DISCUSSION;280
40.7;Acknowledgements;280
40.8;References;280
41;Chapter 36. Representing Bayesian Networks within Probabilistic Horn Abduction;282
41.1;Abstract;282
41.2;1 Introduction;282
41.3;2 Probabilistic Horn Abduction;282
41.4;3 Representing Bayesian networks;284
41.5;4 Best-first abduction;286
41.6;5 Causation;287
41.7;6 Comparison with Other Systems;287
41.8;7 Conclusion;287
41.9;Acknowledgements;289
41.10;References;289
42;Chapter 37. DYNAMIC NETWORK UPDATING TECHNIQUES FOR DIAGNOSTIC REASONING;290
42.1;Abstract;290
42.2;1 INTRODUCTION;290
42.3;2 DYNAMICS OF DIAGNOSTIC REASONING UNDER UNCERTAINTY;291
42.4;3 SYSTEM ARCHITECTURE;291
42.5;4 MODEL CONSTRUCTION HEURISTICS;292
42.6;5 MODEL UPDATING;294
42.7;6 CONCLUSIONS;297
42.8;References;297
43;Chapter 38. High Level Path Planning with Uncertainty;298
43.1;Abstract;298
43.2;1 INTRODUCTION;298
43.3;2 U–GRAPH;299
43.4;3 PATH PLANNING WITH UNCERTAINTY;299
43.5;4 A FORMAL DEFINITION OF PATH PLANNING;300
43.6;5 RELATED WORK;304
43.7;6 CONCLUSION AND FUTURE WORK;305
43.8;Acknowledgements;305
43.9;References;305
44;Chapter 39. Formal Model of Uncertainty for Possibilistic Rules;306
44.1;OVERVIEW;306
44.2;1 POSSIBILITY DISTRIBUTIONS AND MEASURES;306
44.3;2 INFORMATION FUNCTIONS IN POSSIBILITY THEORY;307
44.4;3 DESIGN OF CONTINUOUS POSSIBILITY INFORMATION;308
44.5;4 PROPERTIES OF CONTINUOUS INFORMATION MEASURES;308
44.6;5 PRINCIPLE OF MAXIMUM UNCERTAINTY;309
44.7;REFERENCES;309
45;Chapter 40. Deliberation and its Role in the Formation of Intentions*;311
45.1;Abstract;311
45.2;1 INTRODUCTION;311
45.3;2 OVERVIEW;312
45.4;3 POSSIBLE WORLDS MODEL;312
45.5;4 DECISION TREES AND GOAL WORLDS;315
45.6;5 DELIBERATION AND INTENTIONS;316
45.7;6 CONCLUSIONS;317
45.8;References;318
46;Chapter 41. Handling Uncertainty during Plan Recognitionin Task-Oriented Consultation Systems;319
46.1;Abstract;319
46.2;1 INTRODUCTION;319
46.3;2 THE INFERENCE MECHANISM;320
46.4;3 THE PROBABILITY OF AN INTERPRETATION OF THE DISCOURSE;321
46.5;4 STRENGTH OF INFERENCES;323
46.6;5 INFORMATION CONTENT AND ITS USE;324
46.7;6 EXAMPLES;325
46.8;7 CONCLUSIONS;326
46.9;Acknowledgments;326
46.10;References;326
47;Chapter 42. TRUTH AS UTILITY: A CONCEPTUAL SYNTHESIS;327
47.1;Abstract;327
47.2;1 Introduction;327
47.3;2 Possible Worlds and Desirabilities;328
47.4;3 Desirability and Preference;329
47.5;4 Combination of Preference Functions;331
47.6;5 Possibility and Necessity;331
47.7;6 Preference, Similarity, and Fuzzy Logic;332
47.8;AckNowledgements;333
47.9;References;333
48;Chapter 43. PULCINELLAA General Tool for Propagating Uncertainty in Valuation Networks;334
48.1;Abstract;334
48.2;1. INTRODUCTION;334
48.3;2. THEORETICAL BACKGROUND;335
48.4;3. PULCINELLA;336
48.5;4. EXAMPLES;338
48.6;5. DISCUSSION;340
48.7;6. CONCLUSIONS;341
48.8;Acknowledgements;342
48.9;References;342
49;Chapter 44. Structuring Bodies of Evidence;343
49.1;Abstract;343
49.2;1 INTRODUCTION;343
49.3;2 BASIC NOTIONS IN EVIDENCE THEORY;343
49.4;3 PROPOSAL OF STRUCTURES;344
49.5;4 DEMPSTER RULE OF COMBINATION;347
49.6;5 LOCAL PROPAGATION OF INFORMATION;348
49.7;6 CONCLUSION;349
49.8;Acknowledgements;349
49.9;References;349
50;Chapter 45. On the Generation of Alternative Explanations with Implications for Belief Revision;350
50.1;Abstract;350
50.2;1 INTRODUCTION;350
50.3;2 CONSTRAINT SYSTEMS;351
50.4;3 GENERATING ALTERNATIVE EXPLANATIONS;352
50.5;4 BAYESIAN NETWORKS;355
50.6;5 DISCUSSION;357
50.7;Acknowledgments;358
50.8;References;358
51;Chapter 46. Completing Knowledge by Competing Hierarchies;359
51.1;Abstract;359
51.2;1 Introduction;359
51.3;2 The knowledge base;359
51.4;3· The control strategy;360
51.5;4. The application to a multi-hierarchical knowledge base;362
51.6;5. Discussion;363
51.7;Acknowledgements;363
51.8;References;363
52;Chapter 47. A Graph-Based Inference Method for Conditional Independence;364
52.1;Abstract;364
52.2;1. INTRODUCTION;364
52.3;2. NOTATION AND BASIC CONCEPTS;364
52.4;3. MULTIPLE UNDIRECTED GRAPHS;365
52.5;4. GRAPHICAL REPRESENTATION OF THE GRAPHOID AXIOMS;366
52.6;5. EXTENSIONS TO THE GRAPHICAL OPERATIONS;367
52.7;6. EXAMPLES;367
52.8;7. CONCLUSIONS;370
52.9;Acknowledgements;370
52.10;References;370
53;Chapter 48. A Fusion Algorithm for Solving Bayesian Decision Problems;372
53.1;Abstract;372
53.2;1 INTRODUCTION;372
53.3;2 A DIABETES DIAGNOSIS PROBLEM;372
53.4;3 VALUATION-BASED SYSTEM REPRESENTATION;373
53.5;4 SOLVING A VBS;376
53.6;5 A FUSION ALGORITHM;377
53.7;6 CONCLUSIONS;378
53.8;Acknowledgements;380
53.9;References;380
54;Chapter 49. Algorithms for Irrelevance-Based Partial MAPs;381
54.1;Abstract;381
54.2;1 INTRODUCTION;381
54.3;2 IB-MAP ALGORITHM;384
54.4;3 d-IB MAP ALGORITHM;387
54.5;4 FUTURE WORK;387
54.6;5 SUMMARY;388
54.7;Acknowledgements;388
54.8;References;388
55;Chapter 50. About Updating;389
55.1;Abstract;389
55.2;1. CONDITIONING RULES FOR BELIEF FUNCTIONS;389
55.3;2. THE SCENARIO: THE VOTING INTENTIONS STUDY;392
55.4;3. CONDITIONING;392
55.5;4. BELIEFS INDUCED BY THE PROPORTIONS;395
55.6;5. CONCLUSIONS;396
55.7;Acknowledgements;396
55.8;Bibliography;396
56;Chapter 51. Compressed Constraints in Probabilistic Logic and Their Revision;397
56.1;Abstract;397
56.2;1. PROLIFERATION OF WORLDS;397
56.3;2. OVERVIEW AND EXAMPLE;398
56.4;3. COMPRESSION USING KNOWLEDGE AND USING SEARCH;398
56.5;4. EXPRESSING THE CONSTRAINTS;400
56.6;5. REVISION WITH CONDITIONALS;400
56.7;6. AN EXAMPLE OF REVISION;401
56.8;7. REVISION USING POSTERIORS;402
56.9;8· CONCLUSIONS;402
56.10;Literature Cited;402
57;Chapter 52. Detecting Causal Relations in the Presence of Unmeasured Variables;403
57.1;Abstract;403
57.2;1 Introduction;403
57.3;2 Results;403
57.4;3 Can Theorem 3 Be Strengthened?;405
57.5;4 Appendix;406
57.6;Acknowledgements;407
57.7;References;408
58;Chapter 53. A Method for Integrating Utility Analysis into an Expert System for Design Evaluation under Uncertainty ;409
58.1;Abstract;409
58.2;1. INTRODUCTION;409
58.3;2. INTEGRATION OF USER-DEFINED EVALUATION FUNCTION INTO EXPERT SYSTEM;410
58.4;3. EXAMPLE: AUTOMOTIVE BUMPER MATERIAL SELECTION KBS;413
58.5;4. CONCLUSIONS;415
58.6;Acknowledgment;415
58.7;References;415
59;Chapter 54. From Relational Databases to Belief Networks;417
59.1;Abstract;417
59.2;1 INTRODUCTION;417
59.3;2 RELATIONAL DATABASES;417
59.4;3 BELIEF NETWORKS;419
59.5;4 INITIAL DISTRIBUTIONS;422
59.6;5 CONCLUSIONS;423
59.7;Acknowledgement;424
59.8;References;424
60;Chapter 55. A Monte-Carlo Algorithm for Dempster-Shafer Belief;425
60.1;Abstract;425
60.2;1 INTRODUCTION;425
60.3;2 THE MONTE-CARLO ALGORITHM;425
60.4;3 COMPUTATION TIME;426
60.5;4 EXPERIMENTAL RESULTS;426
60.6;5 THE GENERALISED ALGORITHM;427
60.7;6 DISCUSSION;427
60.8;Acknowledgements;428
60.9;References;428
61;Chapter 56. Compatibility of Quantitative and Qualitative Representations of Belief;429
61.1;Abstract;429
61.2;1 INTRODUCTION;429
61.3;2 QUANTITATIVE BELIEF MEASURES;430
61.4;3 PREFERENCE RELATIONS VERSUS QUANTITATIVE BELIEF MEASURES;431
61.5;4 CONCLUSION;434
61.6;Acknowledgements;435
61.7;References;435
62;Chapter 57. An Efficient Implementation of Belief Function Propagation;436
62.1;Abstract;436
62.2;1 INTRODUCTION;436
62.3;2 SOME BASIC CONCEPTS ABOUT BELIEF FUNCTION NETWORKS;436
62.4;3 BELIEF FUNCTION PROPAGATION USING LOCAL COMPUTATION;437
62.5;4 A More Efficient Implementation;439
62.6;5 UPDATING MESSAGES;441
62.7;6 CONCLUSIONS;443
62.8;Acknowledgements;443
62.9;References;443
63;Chapter 58. A Non-Numeric Approach to Multi-Criteria/Multi-Expert Aggregation Based on Approximate Reasoning;444
63.1;Abstract;444
63.2;1. Introduction;444
63.3;2. PROBLEM FORMULATION;445
63.4;3. A Non-Numeric Technique Multi-Criteria Aggregation;445
63.5;4. Combining Expert's Opinions;446
63.6;5. CONCLUSION;448
63.7;6. REFERENCES;448
64;Chapter 59. Why Do We Need Foundations for Modelling Uncertainties?;449
64.1;1 What Are Foundations?;449
64.2;2 Do We Need Foundations At All?;449
64.3;3 Testability;450
64.4;4 Proliferation and Communication;450
64.5;5 Considering Foundations;450
64.6;6 What Are We Trying to Do?;451
64.7;7 What Are We Talking About?;451
64.8;8 Little but the Truth;451
64.9;9 More of the Truth;452
64.10;10 Usefulness;452
64.11;11 Practise and Theory;452
64.12;12 A Garden;452
64.13;Acknowledgments;453
64.14;References;453
65;Author Index;454



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.