Daepp / Gorkin | Reading, Writing, and Proving | E-Book | sack.de
E-Book

E-Book, Englisch, 395 Seiten, eBook

Reihe: Undergraduate Texts in Mathematics

Daepp / Gorkin Reading, Writing, and Proving

A Closer Look at Mathematics
Erscheinungsjahr 2006
ISBN: 978-0-387-21560-0
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

A Closer Look at Mathematics

E-Book, Englisch, 395 Seiten, eBook

Reihe: Undergraduate Texts in Mathematics

ISBN: 978-0-387-21560-0
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



You are probably about to teach or take a “?rst course in proof techniques,” or maybe you just want to learn more about mathem- ics. No matter what the reason, a student who wishes to learn the material in this book likes mathematics, and we hope to keep it that way. At this point, students have an intuitive sense of why things are true, but not the exposure to the detailed and critical thinking necessary to survive in the mathematical world. We have written this book to bridge this gap. In our experience, students beginning this course have little training in rigorous mathematical reasoning; they need guidance. At the end, they are where they should be; on their own. Our aim is to teach the students to read, write, and do mathematics in- pendently, and to do it with clarity, precision, and care. If we can maintain the enthusiasm they have for the subject, or even create some along the way, our book has done what it was intended to do. Reading. This book was written for a course we teach to ?rst and second year college students. The style is informal. A few problems require calculus, but these are identi?ed as such. Students will also needtoparticipatewhilereadingproofs,proddedbyquestions(such as, “Why?”). Many detailed examples are provided in each chapter.

Daepp / Gorkin Reading, Writing, and Proving jetzt bestellen!

Zielgruppe


Lower undergraduate

Weitere Infos & Material


The How, When, and Why of Mathematics.- Logically Speaking.- Introducing the Contrapositive and Converse.- Set Notation and Quantifiers.- Proof Techniques.- Sets.- Operations on Sets.- More on Operations on Sets.- The Power Set and the Cartesian Product.- Relations.- Partitions.- Order in the Reals.- Functions, Domain, and Range.- Functions, One-to-One, and Onto.- Inverses.- Images and Inverse Images.- Mathematical Induction.- Sequences.- Convergence of Sequences of Real Numbers.- Equivalent Sets.- Finite Sets and an Infinite Set.- Countable and Uncountable Sets.- Metric Spaces.- Getting to Know Open and Closed Sets.- Modular Arithmetic.- Fermat’s Little Theorem.- Projects.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.