D Pathak / Raut / R Sakhare | Generative Adversarial Networks and Deep Learning | Buch | 978-1-032-06811-4 | sack.de

Buch, Englisch, 222 Seiten, Format (B × H): 175 mm x 250 mm, Gewicht: 426 g

D Pathak / Raut / R Sakhare

Generative Adversarial Networks and Deep Learning

Theory and Applications
1. Auflage 2024
ISBN: 978-1-032-06811-4
Verlag: Taylor & Francis Ltd

Theory and Applications

Buch, Englisch, 222 Seiten, Format (B × H): 175 mm x 250 mm, Gewicht: 426 g

ISBN: 978-1-032-06811-4
Verlag: Taylor & Francis Ltd


This book explores how to use generative adversarial networks in a variety of applications and emphasises their substantial advancements over traditional generative models. This book's major goal is to concentrate on cutting-edge research in deep learning and generative adversarial networks, which includes creating new tools and methods for processing text, images, and audio.

A Generative Adversarial Network (GAN) is a class of machine learning framework and is the next emerging network in deep learning applications. Generative Adversarial Networks(GANs) have the feasibility to build improved models, as they can generate the sample data as per application requirements. There are various applications of GAN in science and technology, including computer vision, security, multimedia and advertisements, image generation, image translation,text-to-images synthesis, video synthesis, generating high-resolution images, drug discovery, etc.

Features:

- Presents a comprehensive guide on how to use GAN for images and videos.

- Includes case studies of Underwater Image Enhancement Using Generative Adversarial Network, Intrusion detection using GAN

- Highlights the inclusion of gaming effects using deep learning methods

- Examines the significant technological advancements in GAN and its real-world application.

- Discusses as GAN challenges and optimal solutions

The book addresses scientific aspects for a wider audience such as junior and senior engineering, undergraduate and postgraduate students, researchers, and anyone interested in the trends development and opportunities in GAN and Deep Learning.

The material in the book can serve as a reference in libraries, accreditation agencies, government agencies, and especially the academic institution of higher education intending to launch or reform their engineering curriculum

D Pathak / Raut / R Sakhare Generative Adversarial Networks and Deep Learning jetzt bestellen!

Zielgruppe


Academic, Postgraduate, Professional, and Undergraduate Advanced

Weitere Infos & Material


1. Generative Adversarial Networks and Its Use cases. 2. Image-to-Image Translation using Generative Adversarial Networks. 3. Image Editing Using Generative Adversarial Network. 4. Generative Adversarial Networks for Video to Video Translation. 5. Security Issues in Generative Adversarial Networks. 6. Generative Adversarial Networks aided Intrusion Detection System. 7. Textual Description to Facial Image Generation. 8. An application of Generative Adversarial Network in Natural Language Generation. 9. Beyond image synthesis: GAN and Audio: It covers how GAN will be used for audio synthesis along with its applications. 10. A Study on the Application Domains of Electroencephalogram for the Deep Learning-Based Transformative Healthcare. 11. Emotion Detection using Generative Adversarial Network. 12. Underwater Image Enhancement Using Generative Adversarial Network. 13. Towards GAN Challenges and Its Optimal Solutions.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.