Curtis | Orbital Mechanics | E-Book | sack.de
E-Book

E-Book, Englisch, 704 Seiten, Web PDF

Curtis Orbital Mechanics

For Engineering Students
1. Auflage 2015
ISBN: 978-0-08-047054-2
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

For Engineering Students

E-Book, Englisch, 704 Seiten, Web PDF

ISBN: 978-0-08-047054-2
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



Orbital mechanics is a cornerstone subject for aerospace engineering students. However, with its basis in classical physics and mechanics, it can be a difficult and weighty subject. Howard Curtis - Professor of Aerospace Engineering at Embry-Riddle University, the US's #1 rated undergraduate aerospace school - focuses on what students at undergraduate and taught masters level really need to know in this hugely valuable text. Fully supported by the analytical features and computer based tools required by today's students, it brings a fresh, modern, accessible approach to teaching and learning orbital mechanics. A truly essential new resource.A complete, stand-alone text for this core aerospace engineering subjectRichly-detailed, up-to-date curriculum coverage; clearly and logically developed to meet the needs of studentsHighly illustrated and fully supported with downloadable MATLAB algorithms for project and practical work; with fully worked examples throughout, Q&A material, and extensive homework exercises.

Professor Curtis is former professor and department chair of Aerospace Engineering at Embry-Riddle Aeronautical University. He is a licensed professional engineer and is the author of two textbooks (Orbital Mechanics 3e, Elsevier 2013, and Fundamentals of Aircraft Structural Analysis, McGraw Hill 1997). His research specialties include continuum mechanics, structures, dynamics, and orbital mechanics.

Curtis Orbital Mechanics jetzt bestellen!

Weitere Infos & Material


1;COVER;1
2;TOC$CONTENTS;6
3;PREFACE;12
4;SUPPLEMENTS TO THE TEXT;16
5;CH$CHAPTER 1 DYNAMICS OF POINT MASSES;18
5.1;1.1 INTRODUCTION;18
5.2;1.2 KINEMATICS;19
5.3;1.3 MASS, FORCE AND NEWTON'S LAW OF GRAVITATION;24
5.4;1.4 NEWTON'S LAW OF MOTION;27
5.5;1.5 TIME DERIVATIVES OF MOVING VECTORS;32
5.6;1.6 RELATIVE MOTION;37
5.7;PROBLEMS;46
6;CH$CHAPTER 2 THE TWO-BODY PROBLEM;50
6.1;2.1 INTRODUCTION;50
6.2;2.2 EQUATIONS OF MOTION IN AN INERTIAL FRAME;51
6.3;2.3 EQUATIONS OF RELATIVE MOTION;54
6.4;2.4 ANGULAR MOMENTUM AND THE ORBIT FORMULAS;59
6.5;2.5 THE ENERGY LAW;67
6.6;2.6 CIRCULAR ORBITS (e = 0);68
6.7;2.7 ELLIPTICAL ORBITS (0 < e < 1);72
6.8;2.8 PARABOLIC TRAJECTORIES (e = 1);82
6.9;2.9 HYPERBOLIC TRAJECTORIES (e > 1);86
6.10;2.10 PERIFOCAL FRAME;93
6.11;2.11 THE LAGRANGE COEFFICIENTS;95
6.12;2.12 RESTRICTED THREE-BODY PROBLEM;106
6.12.1;2.12.1 Lagrange points;109
6.12.2;2.12.2 Jacobi constant;113
6.13;PROBLEMS;118
7;CH$CHAPTER 3 ORBITAL POSITION AS A FUNCTION OF TIME;124
7.1;3.1 INTRODUCTION;124
7.2;3.2 TIME SINCE PERIAPSIS;125
7.3;3.3 CIRCULAR ORBITS;125
7.4;3.4 ELLIPTICAL ORBITS;126
7.5;3.5 PARABOLIC TRAJECTORIES;141
7.6;3.6 HYPERBOLIC TRAJECTORIES;142
7.7;3.7 UNIVERSAL VARIABLES;151
7.8;PROBLEMS;162
8;CH$CHAPTER 4 ORBITS IN THREE DIMENSIONS;166
8.1;4.1 INTRODUCTION;166
8.2;4.2 GEOCENTRIC RIGHT ASCENSION–DECLINATION FRAME;167
8.3;4.3 STATE VECTOR AND THE GEOCENTRIC EQUATORIAL FRAME;171
8.4;4.4 ORBITAL ELEMENTS AND THE STATE VECTOR;175
8.5;4.5 COORDINATE TRANSFORMATION;181
8.6;4.6 TRANSFORMATION BETWEEN GEOCENTRIC EQUATORIAL AND PERIFOCAL FRAMES;189
8.7;4.7 EFFECTS OF THE EARTH'S OBLATENESS;194
8.8;PROBLEMS;204
9;CH$CHAPTER 5 PRELIMINARY ORBIT DETERMINATION;210
9.1;5.1 INTRODUCTION;210
9.2;5.2 GIBBS' METHOD OF ORBIT DETERMINATION FROM THREE POSITION VECTORS;211
9.3;5.3 LAMBERT'S PROBLEM;219
9.4;5.4 SIDEREAL TIME;230
9.5;5.5 TOPOCENTRIC COORDINATE SYSTEM;235
9.6;5.6 TOPOCENTRIC EQUATORIAL COORDINATE SYSTEM;238
9.7;5.7 TOPOCENTRIC HORIZON COORDINATE SYSTEM;240
9.8;5.8 ORBIT DETERMINATION FROM ANGLE AND RANGE MEASUREMENTS;245
9.9;5.9 ANGLES-ONLY PRELIMINARY ORBIT DETERMINATION;252
9.10;5.10 GAUSS'S METHOD OF PRELIMINARY ORBIT DETERMINATION;253
9.11;PROBLEMS;267
10;CH$CHAPTER 6 ORBITAL MANEUVERS;272
10.1;6.1 INTRODUCTION;272
10.2;6.2 IMPULSIVE MANEUVERS;273
10.3;6.3 HOHMANN TRANSFER;274
10.4;6.4 BI-ELLIPTIC HOHMANN TRANSFER;281
10.5;6.5 PHASING MANEUVERS;285
10.6;6.6 NON-HOHMANN TRANSFERS WITH A COMMON APSE LINE;290
10.7;6.7 APSE LINE ROTATION;296
10.8;6.8 CHASE MANEUVERS;302
10.9;6.9 PLANE CHANGE MANEUVERS;307
10.10;PROBLEMS;321
11;CH$CHAPTER 7 RELATIVE MOTION AND RENDEZVOUS;332
11.1;7.1 INTRODUCTION;332
11.2;7.2 RELATIVE MOTION IN ORBIT;333
11.3;7.3 LINEARIZATION OF THE EQUATIONS OF RELATIVE MOTION IN ORBIT;339
11.4;7.4 CLOHESSY–WILTSHIRE EQUATIONS;341
11.5;7.5 TWO-IMPULSE RENDEZVOUS MANEUVERS;347
11.6;7.6 RELATIVE MOTION IN CLOSE-PROXIMITY CIRCULAR ORBITS;355
11.7;PROBLEMS;357
12;CH$CHAPTER 8 INTERPLANETARY TRAJECTORIES;364
12.1;8.1 INTRODUCTION;364
12.2;8.2 INTERPLANETARY HOHMANN TRANSFERS;365
12.3;8.3 RENDEZVOUS OPPORTUNITIES;366
12.4;8.4 SPHERE OF INFLUENCE;371
12.5;8.5 METHOD OF PATCHED CONICS;376
12.6;8.6 PLANETARY DEPARTURE;377
12.7;8.7 SENSITIVITY ANALYSIS;383
12.8;8.8 PLANETARY RENDEZVOUS;385
12.9;8.9 PLANETARY FLYBY;392
12.10;8.10 PLANETARY EPHEMERIS;404
12.11;8.11 NON-HOHMANN INTERPLANETARY TRAJECTORIES;408
12.12;PROBLEMS;415
13;CH$CHAPTER 9 RIGID-BODY DYNAMICS;416
13.1;9.1 INTRODUCTION;416
13.2;9.2 KINEMATICS;417
13.3;9.3 EQUATIONS OF TRANSLATIONAL MOTION;425
13.4;9.4 EQUATIONS OF ROTATIONAL MOTION;427
13.5;9.5 MOMENTS OF INERTIA;431
13.5.1;9.5.1 Parallel axis theorem;445
13.6;9.6 EULER'S EQUATIONS;452
13.7;9.7 KINETIC ENERGY;458
13.8;9.8 THE SPINNING TOP;460
13.9;9.9 EULER ANGLES;465
13.10;9.10 YAW, PITCH AND ROLL ANGLES;476
13.11;PROBLEMS;480
14;CH$CHAPTER 10 SATELLITE ATTITUDE DYNAMICS;492
14.1;10.1 INTRODUCTION;492
14.2;10.2 TORQUE-FREE MOTION;493
14.3;10.3 STABILITY OF TORQUE-FREE MOTION;503
14.4;10.4 DUAL-SPIN SPACECRAFT;508
14.5;10.5 NUTATION DAMPER;512
14.6;10.6 CONING MANEUVER;520
14.7;10.7 ATTITUDE CONTROL THRUSTERS;523
14.8;10.8 YO-YO DESPIN MECHANISM;526
14.9;10.9 GYROSCOPIC ATTITUDE CONTROL;533
14.10;10.10 GRAVITY-GRADIENT STABILIZATION;547
14.11;PROBLEMS;560
15;CH$CHAPTER 11 ROCKET VEHICLE DYNAMICS;568
15.1;11.1 INTRODUCTION;568
15.2;11.2 EQUATIONS OF MOTION;569
15.3;11.3 THE THRUST EQUATION;572
15.4;11.4 ROCKET PERFORMANCE;574
15.5;11.5 RESTRICTED STAGING IN FIELD-FREE SPACE;577
15.6;11.6 OPTIMAL STAGING;587
15.6.1;11.6.1 Lagrange multiplier;587
15.7;PROBLEMS;595
16;REFERENCES AND FURTHER READING;598
17;APPENDIX A PHYSICAL DATA;600
18;APPENDIX B A ROAD MAP;602
19;APPENDIX C NUMERICAL INTEGRATION OF THE n-BODY EQUATIONS OF MOTION;604
19.1;C.1 FUNCTION FILE accel_3body.m;607
19.2;C.2 SCRIPT FILE threebody.m;609
20;APPENDIX D MATLAB ALGORITHMS;612
20.1;D.1 INTRODUCTION;613
20.2;D.2 ALGORITHM 3.1: SOLUTION OF KEPLER'S EQUATION BY NEWTON'S METHOD;613
20.3;D.3 ALGORITHM 3.2: SOLUTION OF KEPLER'S EQUATION FOR THE HYPERBOLA USING NEWTON'S METHOD;615
20.4;D.4 CALCULATION OF THE STUMPFF FUNCTIONS S(z) AND C(z);617
20.5;D.5 ALGORITHM 3.3: SOLUTION OF THE UNIVERSAL KEPLER'S EQUATION USING NEWTON'S METHOD;618
20.6;D.6 CALCULATION OF THE LAGRANGE COEFFICIENTS f AND g AND THEIR TIME DERIVATIVES;620
20.7;D.7 ALGORITHM 3.4: CALCULATION OF THE STATE VECTOR (r, v) GIVEN THE INITIAL STATE VECTOR (r[sub(0)], v[sub(0)]) AND THE TIME LAPSE ?t;621
20.8;D.8 ALGORITHM 4.1: CALCULATION OF THE ORBITAL ELEMENTS FROM THE STATE VECTOR;623
20.9;D.9 ALGORITHM 4.2: CALCULATION OF THE STATE VECTOR FROM THE ORBITAL ELEMENTS;627
20.10;D.10 ALGORITHM 5.1: GIBBS' METHOD OF PRELIMINARY ORBIT DETERMINATION;630
20.11;D.11 ALGORITHM 5.2: SOLUTION OF LAMBERT'S PROBLEM;633
20.12;D.12 CALCULATION OF JULIAN DAY NUMBER AT 0 HR UT;638
20.13;D.13 ALGORITHM 5.3: CALCULATION OF LOCAL SIDEREAL TIME;640
20.14;D.14 ALGORITHM 5.4: CALCULATION OF THE STATE VECTOR FROM MEASUREMENTS OF RANGE, ANGULAR POSITION AND THEIR RATES;643
20.15;D.15 ALGORITHMS 5.5 AND 5.6: GAUSS'S METHOD OF PRELIMINARY ORBIT DETERMINATION WITH ITERATIVE IMPROVEMENT;648
20.16;D.16 CONVERTING THE NUMERICAL DESIGNATION OF A MONTH OR A PLANET INTO ITS NAME;657
20.17;D.17 ALGORITHM 8.1: CALCULATION OF THE STATE VECTOR OF A PLANET AT A GIVEN EPOCH;658
20.18;D.18 ALGORITHM 8.2: CALCULATION OF THE SPACECRAFT TRAJECTORY FROM PLANET 1 TO PLANET 2;665
21;APPENDIX E GRAVITATIONAL POTENTIAL ENERGY OF A SPHERE;674
22;IDX$INDEX;678
22.1;A;678
22.2;B;679
22.3;C;679
22.4;D;680
22.5;E;680
22.6;F;681
22.7;G;681
22.8;H;682
22.9;I;682
22.10;J;683
22.11;K;683
22.12;L;683
22.13;M;683
22.14;N;684
22.15;O;684
22.16;P;685
22.17;R;686
22.18;S;687
22.19;T;688
22.20;U;689
22.21;V;690
22.22;W;690
22.23;Y;690
22.24;Z;690



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.