Curien | Peeling Random Planar Maps | E-Book | sack.de
E-Book

E-Book, Englisch, 286 Seiten

Reihe: Mathematics and Statistics (R0)

Curien Peeling Random Planar Maps

École d’Été de Probabilités de Saint-Flour XLIX – 2019
Erscheinungsjahr 2023
ISBN: 978-3-031-36854-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

École d’Été de Probabilités de Saint-Flour XLIX – 2019

E-Book, Englisch, 286 Seiten

Reihe: Mathematics and Statistics (R0)

ISBN: 978-3-031-36854-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



These Lecture Notes provide an introduction to the study of those discrete surfaces which are obtained by randomly gluing polygons along their sides in a plane. The focus is on the geometry of such random planar maps (diameter, volume growth, scaling and local limits...) as well as the behavior of statistical mechanics models on them (percolation, simple random walks, self-avoiding random walks...).

A “Markovian” approach is adopted to explore these random discrete surfaces, which is then related to the analogous one-dimensional random walk processes. This technique, known as "peeling exploration" in the literature, can be seen as a generalization of the well-known coding processes for random trees (e.g. breadth first or depth first search). It is revealed that different types of Markovian explorations can yield different types of information about a surface.

Based on an École d'Été de Probabilités de Saint-Flour course delivered by the author in 2019, the book is aimed at PhD students and researchers interested in graph theory, combinatorial probability and geometry.  Featuring open problems and a wealth of interesting figures, it is the first book to be published on the theory of random planar maps.
Curien Peeling Random Planar Maps jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Part I (Planar) Maps. - 1. Discrete Random Surfaces in High Genus. - 2. Why Are Planar Maps Exceptional?. - 3. The Miraculous Enumeration of Bipartite Maps. - Part II Peeling Explorations. - 4. Peeling of Finite Boltzmann Maps. - 5. Classification of Weight Sequences. - Part III Infinite Boltzmann Maps. - 6. Infinite Boltzmann Maps of the Half-Plane. - 7. Infinite Boltzmann Maps of the Plane. - 8. Hyperbolic Random Maps. - 9. Simple Boundary, Yet a Bit More Complicated. - 10. Scaling Limit for the Peeling Process. - Part IV Percolation(s). - 11. Percolation Thresholds in the Half-Plane. - 12. More on Bond Percolation. - Part V Geometry. - 13. Metric Growths. - 14. A Taste of Scaling Limit. - Part VI Simple Random Walk. - 15. Recurrence, Transience, Liouville and Speed. - 16. Subdiffusivity and Pioneer Points.


Nicolas Curien has been a Professor at Université Paris-Saclay since 2014. He works on random geometry in a broad sense.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.