Buch, Englisch, 281 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 536 g
Reihe: Textbooks in Mathematics
With Proof Strategies
Buch, Englisch, 281 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 536 g
Reihe: Textbooks in Mathematics
ISBN: 978-0-367-54966-4
Verlag: Chapman and Hall/CRC
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1. Proofs, Sets, Functions, and Induction. 1.1. Proofs. 1.2. Sets. 1.3. Functions. 1.4. Mathematical Induction. 2. The Real Numbers. 2.1. Introduction. 2.2. R is an Ordered Field. 2.3 The Completeness Axiom. 2.4. The Archimedean Property. 2.5. Nested Intervals Theorem. 3. Sequences. 3.1 Convergence. 3.2 Limit Theorems for Sequences. 3.3. Subsequences. 3.4. Monotone Sequences. 3.5. Bolzano–Weierstrass Theorems. 3.6. Cauchy Sequences. 3.7. Infinite Limits. 3.8. Limit Superior and Limit Inferior. 4. Continuity. 4.1. Continuous Functions. 4.2. Continuity and Sequences. 4.3. Limits 0f Functions. 4.4. Consequences 0f Continuity. 4.5 Uniform Continuity. 5. Differentiation. 5.1. The Derivative. 5.2. The Mean Value Theorem. 5.3. Taylor’s Theorem. 6. _ Riemann Integration. 6.1. The Riemann Integral. 6.2. Properties of The Riemann Integral. 6.3. Families of Integrable Functions. 6.4. The Fundamental Theorem of Calculus. 7. Infinite Series. 7.1. Convergence and Divergence. 7.2 Convergence Tests. 7.3. Regrouping and Rearranging Terms of a Series. 8. Sequences and Series of Functions. 8.1 Pointwise and Uniform Convergence. 8.2. Preservation Theorems. 8.3. Power Series. 8.4. Taylor Series. Appendix A: Proof of the Composition Theorem. Appendix B: Topology on the Real Numbers. Appendix C: Review of Proof and Logic.