Cuevas / Garcia-De-Lira / Chavarin-Fajardo | Optimization Strategies: A Decade of Metaheuristic Algorithm Development | Buch | 978-3-031-81012-1 | sack.de

Buch, Englisch, 447 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 855 g

Reihe: Intelligent Systems Reference Library

Cuevas / Garcia-De-Lira / Chavarin-Fajardo

Optimization Strategies: A Decade of Metaheuristic Algorithm Development


Erscheinungsjahr 2025
ISBN: 978-3-031-81012-1
Verlag: Springer Nature Switzerland

Buch, Englisch, 447 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 855 g

Reihe: Intelligent Systems Reference Library

ISBN: 978-3-031-81012-1
Verlag: Springer Nature Switzerland


This book is to explore the development of metaheuristic algorithms over the past decade, focusing on key advancements in their components and structural features, which have driven progress in search techniques. This analysis aims to provide readers with a thorough understanding of the fundamental aspects of these methods, which are essential for their practical application. To offer a broad perspective on the evolution of metaheuristic algorithms, this book reviews 11 specific algorithms developed by the evolutionary computation group at the University of Guadalajara over the past 10 years. These algorithms illustrate the most significant mechanisms and structures discussed in the academic and research communities during their development. By studying these examples, readers will gain valuable insights into the innovative methods and strategic improvements that have shaped the field. The book is designed from a teaching standpoint, making it suitable for undergraduate and postgraduate students in science, electrical engineering, or computational mathematics. Moreover, engineering practitioners unfamiliar with metaheuristic computation will appreciate how these techniques have been adapted to address complex real-world engineering problems, moving beyond theoretical constructs.

Cuevas / Garcia-De-Lira / Chavarin-Fajardo Optimization Strategies: A Decade of Metaheuristic Algorithm Development jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1.Introductory concepts of metaheuristic techniques.- 2.An algorithm for global optimization inspired by collective animal behavior.- 3.A swarm optimization algorithm inspired in the behavior of the social-spider.- 4.An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation.- 5.Harnessing Locust Swarm Dynamics for Optimization Algorithms.- 6.Improving Function Evaluation Efficiency with an Enhanced Evolutionary Algorithm.- 7.A Fuzzy Logic-Inspired Metaheuristic Method for Enhanced Optimization.- 8.Modeling Optimization Techniques Inspired by Yellow Saddle Goatfish Behavior.- 9.An optimization algorithm guided by a machine learning approach.- 10.An improved Simulated Annealing algorithm based on ancient metallurgy techniques.- 11.Agent-based modeling approaches as metaheuristic methods.- 12.Evolutionary-Mean shift algorithm for dynamic multimodal function optimization.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.