Cueto / González / Alfaro Proper Generalized Decompositions
1. Auflage 2016
ISBN: 978-3-319-29994-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
An Introduction to Computer Implementation with Matlab
E-Book, Englisch, 103 Seiten
Reihe: Engineering
ISBN: 978-3-319-29994-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proper Generalized Decomposition (PGD) is a method for numerical simulation in many fields of applied science and engineering. As a generalization of Proper Orthogonal Decomposition or Principal Component Analysis to an arbitrary number of dimensions, PGD is able to provide the analyst with very accurate solutions for problems defined in high dimensional spaces, parametric problems and even real-time simulation.
Zielgruppe
Graduate
Autoren/Hrsg.
Weitere Infos & Material
Introduction.- 2 To begin with: PGD for Poisson problems.- 2.1 Introduction.- 2.2 The Poisson problem.- 2.3 Matrix structure of the problem.- 2.4 Matlab code for the Poisson problem.- 3 Parametric problems.- 3.1 A particularly challenging problem: a moving load as a parameter.- 3.2 The problem under the PGD formalism.- 3.2.1 Computation of S ( s ) assuming R ( x ) is known.- 3.2.2 Computation of R ( x ) assuming S ( s ) is known.- 3.3 Matrix structure of the problem.- 3.4 Matlab code for the influence line problem.- 4 PGD for non-linear problems.- 4.1 Hyperelasticity.- 4.2 Matrix structure of the problem.- 4.2.1 Matrix form of the term T 2.- 4.2.2 Matrix form of the term T 4.- 4.2.3 Matrix form of the term T 6.- 4.2.4 Matrix form for the term T 8.- 4.2.5 Matrix form of the term T 9.- 4.2.6 Matrix form of the term T 10.- 4.2.7 Final comments.- 4.3 Matlab code.- 5 PGD for dynamical problems.- 5.1 Taking initial conditions as parameters.- 5.2 Developing the weak form of the problem.- 5.3 Matrix form of the problem.- 5.3.1 Time integration of the equations of motion.- 5.3.2 Computing a reduced-order basis for the field of initial conditions.- 5.3.3 Projection of the equations onto a reduced, parametric basis.- 5.4 Matlab code.- References.- Index .




