Buch, Englisch, 344 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 6035 g
Buch, Englisch, 344 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 6035 g
Reihe: Advances in Computer Vision and Pattern Recognition
ISBN: 978-3-319-86383-2
Verlag: Springer International Publishing
This authoritative volume will be of great interest to a broad audience ranging from researchers and practitioners, to students involved in computer vision, pattern recognition and machine learning.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1. A Comprehensive Survey on Domain Adaptation for Visual Applications
Gabriela Csurka
2. A Deeper Look at Dataset Bias
Tatiana Tommasi, Novi Patricia, Barbara Caputo, and Tinne Tuytelaars
Part I: Shallow Domain Adaptation Methods
3. Geodesic Flow Kernel and Landmarks: Kernel Methods for Unsupervised Domain Adaptation
Boqing Gong, Kristen Grauman, and Fei Sha
4. Unsupervised Domain Adaptation based on Subspace Alignment
Basura Fernando, Rahaf Aljundi, Rémi Emonet, Amaury Harbard, Marc Sebban, and Tinne Tuytelaars
5. Learning Domain Invariant Embeddings by Matching Distributions
Mahsa Baktashmotlagh, Mehrtash Harandi, and Mathieu Salzmann
Nazli Farajidavar, Teofilo de Campos, and Josef Kittler
7. What To Do When the Access to the Source Data is Constrained?
Gabriela Csurka, Boris Chidlovskii, and Stéphane Clinchant
Part II: Deep Domain Adaptation Methods
8. Correlation Alignment for Unsupervised Domain Adaptation
Baochen Sun, Jiashi Feng, and Kate Saenko
9. Simultaneous Deep Transfer Across Domains and Tasks
Judy Hoffman, Eric Tzeng, Trevor Darrell, and Kate Saenko
10. Domain-Adversarial Training of Neural Networks
Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky
Part III: Beyond Image Classification
11. Unsupervised Fisher Vector Adaptation for Re-Identification
Usman Tariq, Jose A. Rodriguez-Serrano, and Florent Perronnin
12. Semantic Segmentation of Urban Scenes via Domain Adaptation of SYNTHIA
German Ros, Laura Sellart, Gabriel Villalonga, Elias Maidanik, Francisco Molero, Marc Garcia, Adriana Cedeño, Francisco Perez, Didier Ramirez, Eduardo Escobar, Jose Luis Gomez, David Vazquez, and Antonio M. Lopez
13. From Virtual to Real World Visual Perception using Domain Adaptation – The DPM as Example
Antonio M. López, Jiaolong Xu, José L. Gómez, David Vázquez, and Germán Ros
14. Generalizing Semantic Part Detectors Across Domains
David Novotny, Diane Larlus, and Andrea Vedaldi
Part IV: Beyond Domain Adaptation: Unifying Perspectives
15. A Multi-Source Domain Generalization Approach to Visual Attribute DetectionChuang Gan, Tianbao Yang, and Boqing Gong
16. Unifying Multi-Domain Multi-Task Learning: Tensor and Neural Network Perspectives
Yongxin Yang and Timothy M. Hospedales




