E-Book, Englisch, 344 Seiten, eBook
Csurka Domain Adaptation in Computer Vision Applications
1. Auflage 2017
ISBN: 978-3-319-58347-1
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 344 Seiten, eBook
Reihe: Advances in Computer Vision and Pattern Recognition
ISBN: 978-3-319-58347-1
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
A Comprehensive Survey on Domain Adaptation for Visual Applications.- A Deeper Look at Dataset Bias.- Part I: Shallow Domain Adaptation Methods .- Geodesic Flow Kernel and Landmarks: Kernel Methods for Unsupervised Domain Adaptation.- Unsupervised Domain Adaptation based on Subspace Alignment.- Learning Domain Invariant Embeddings by Matching Distributions.- Adaptive Transductive Transfer Machines: A Pipeline for Unsupervised Domain Adaptation.- What To Do When the Access to the Source Data is Constrained?.- Part II: Deep Domain Adaptation Methods .- Correlation Alignment for Unsupervised Domain Adaptation.- Simultaneous Deep Transfer Across Domains and Tasks.- Domain-Adversarial Training of Neural Networks.- Part III: Beyond Image Classification .- Unsupervised Fisher Vector Adaptation for Re-Identification.- Semantic Segmentation of Urban Scenes via Domain Adaptation of SYNTHIA.- From Virtual to Real World Visual Perception using Domain Adaptation – The DPM as Example.- Generalizing Semantic Part Detectors Across Domains.- Part IV: Beyond Domain Adaptation: Unifying Perspectives .- A Multi-Source Domain Generalization Approach to Visual Attribute Detection.- Unifying Multi-Domain Multi-Task Learning: Tensor and Neural Network Perspectives.