Liebe Besucherinnen und Besucher,
heute ab 15 Uhr feiern wir unser Sommerfest und sind daher nicht erreichbar. Ab morgen sind wir wieder wie gewohnt für Sie da. Wir bitten um Ihr Verständnis – Ihr Team von Sack Fachmedien
Psychological Modeling and Testing of AI Systems
Buch, Englisch, 169 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 453 g
ISBN: 978-3-030-17079-0
Verlag: Springer International Publishing
- Explores the concepts of Artificial Psychology and Artificial Neuroscience as applied to advanced artificially cognitive systems;
- Provides insight into the world of cognitive architectures and biologically-based computing designs which will mimic human brain functionality in artificial intelligent systems of the future;
- Provides description and design of artificial psychological modeling to provide insight into how advanced artificial intelligent systems are learning and evolving;
- Explores artificial reasoning and inference architectures and the types of modeling and testing that will be required to "trust" an autonomous artificial intelligent systems.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Interdisziplinäres Wissenschaften Wissenschaften Interdisziplinär Neurowissenschaften, Kognitionswissenschaft
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Mathematik | Informatik EDV | Informatik Informatik Mensch-Maschine-Interaktion
- Sozialwissenschaften Psychologie Psychologische Disziplinen Angewandte Psychologie
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Klinische und Innere Medizin Neurologie, Klinische Neurowissenschaft
Weitere Infos & Material
Chapter 1. Introduction: Psychology and Technology.- Chapter 2. Systems-Level Thinking for Artificial Intelligent Systems.- Chapter 3. Psychological Constructs for AI Systems: The Information Continuum.- Chapter 4. Human-AI Collaboration.- Chapter 5. Abductive Artificial Intelligence Learning Models.- Chapter 6. Artificial Creativity and Self-Evolution: Abductive Reasoning in Artificial Life Forms.- Chapter 7. Artificial Intelligent Inferences utilizing Occam Abduction.- Chapter 8. Artificial Neural Diagnostics and Prognostics: Self-Soothing in Cognitive Systems.- Chapter 9. Ontology-Based Knowledge Management for Artificial Intelligent Systems.- Chapter 10. Cognitive Control of Self-Evolving Life Forms (SELF) utilizing Artificial Procedural Memories.- Chapter 11. Methodologies for Continuous, Life-Long Machine Learning for AI Systems.- Chapter 12. Implicit Learning in Artificial Intelligence.- Chapter 13. Data Analytics: The Big Data Analytics Process (BDAP) Architecture.- Chapter 14.Conclusions and Next Steps.