Buch, Englisch, 446 Seiten, Format (B × H): 154 mm x 241 mm, Gewicht: 814 g
Buch, Englisch, 446 Seiten, Format (B × H): 154 mm x 241 mm, Gewicht: 814 g
Reihe: Chapman & Hall/CRC Computational Science
ISBN: 978-1-4398-8139-2
Verlag: Taylor & Francis Inc
Data-intensive science has the potential to transform scientific research and quickly translate scientific progress into complete solutions, policies, and economic success. But this collaborative science is still lacking the effective access and exchange of knowledge among scientists, researchers, and policy makers across a range of disciplines. Bringing together leaders from multiple scientific disciplines, Data-Intensive Science shows how a comprehensive integration of various techniques and technological advances can effectively harness the vast amount of data being generated and significantly accelerate scientific progress to address some of the world’s most challenging problems.
In the book, a diverse cross-section of application, computer, and data scientists explores the impact of data-intensive science on current research and describes emerging technologies that will enable future scientific breakthroughs. The book identifies best practices used to tackle challenges facing data-intensive science as well as gaps in these approaches. It also focuses on the integration of data-intensive science into standard research practice, explaining how components in the data-intensive science environment need to work together to provide the necessary infrastructure for community-scale scientific collaborations.
Organizing the material based on a high-level, data-intensive science workflow, this book provides an understanding of the scientific problems that would benefit from collaborative research, the current capabilities of data-intensive science, and the solutions to enable the next round of scientific advancements.
Zielgruppe
Researchers in data intensive science and who work with large data sets; computational scientists and data management researchers.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
What Is Data-Intensive Science? Where Does All the Data Come From? Data-Intensive Grand Challenge Science Problems: Large-Scale Microscopy Imaging Analytics for In Silico Biomedicine. Answering Fundamental Questions about the Universe. Materials of the Future: From Business Suits to Space Suits. Case Studies: Earth System Grid Federation: Infrastructure to Support Climate Science Analysis as an International Collaboration: A Data-Driven Activity for Extreme-Scale Climate Science. Data-Intensive Production Grids. EUDAT: Toward a Pan-European Collaborative Data Infrastructure. From Challenges to Solutions: Infrastructure for Data-Intensive Science: A Bottom-Up Approach. A Posteriori Ontology Engineering for Data-Driven Science. Transforming Data into the Appropriate Context. Bridging the Gap between Scientific Data Producers and Consumers: A Provenance Approach. In Situ Exploratory Data Analysis for Scientific Discovery. Interactive Data Exploration. Linked Science: Interconnecting Scientific Assets. Summary and Conclusions. Index.