Crane | Two-Component Signaling Systems, Part C | E-Book | sack.de
E-Book

E-Book, Englisch, Band Volume 471, 496 Seiten

Reihe: Methods in Enzymology

Crane Two-Component Signaling Systems, Part C


1. Auflage 2010
ISBN: 978-0-12-381348-0
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

E-Book, Englisch, Band Volume 471, 496 Seiten

Reihe: Methods in Enzymology

ISBN: 978-0-12-381348-0
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Multicellular organisms must be able to adapt to cellular events to accommodate prevailing conditions. Sensory-response circuits operate by making use of a phosphorylation control mechanism known as the 'two-component system.' This volume, the third in a three-volume treatment edited by the same group of editors, includes a wide range of methods, including those dealing with the Sln-1 kinase pathway, triazole sensitivity in C. albicans, and histidine kinases in cyanobacteria circadian clock. - Includes time-tested core methods and new innovations applicable to any researcher studing two-component signaling systems or histidine kinases - Methods included are useful to both established researchers and newcomers to the field - Relevant background and reference information given for procedures can be used as a guide to developing protocols in a number of disciplines

Crane Two-Component Signaling Systems, Part C jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Methods in Enzymology Two-Component Signaling Systems, Part C;4
3;Copyright Page;5
4;Contents;6
5;Contributors;14
7;Chapter 1: Characterizing Cross-Talk In Vivo: Avoiding Pitfalls and Overinterpretation;48
7.1;Abstract;48
7.2;1. Overview;49
7.3;2. Sources of Cross-Talk;50
7.4;3. Cross-Talk Suppression;51
7.5;4. Transcriptional Reporters;53
7.6;5. Response Regulator Localization;55
7.7;6. Phosphatase Cross-Talk;60
7.8;7. Signal Response in Cross-Talk Networks;61
7.9;8. Concluding Remarks;61
7.10;Acknowledgments;62
7.11;References;62
8;Chapter 2: Inference of Direct Residue Contacts in Two-Component Signaling;64
8.1;Abstract;64
8.2;1. Introduction;65
8.3;2. Extraction Tools;71
8.4;3. DCA: Direct Coupling Analysis;75
8.5;Appendix: Nonstandard Linear Algebra Functions;85
8.6;Acknowledgments;86
8.7;References;86
9;Chapter 3: Computational Modeling of Phosphotransfer Complexes in Two-Component Signaling;90
9.1;Abstract;90
9.2;1. Introduction;91
9.3;2. Methods;94
9.4;3. Summary;101
9.5;Acknowledgments;102
9.6;References;102
10;Chapter 4: Kinetic Studies of the Yeast His-Asp Phosphorelay Signaling Pathway;106
10.1;Abstract;106
10.2;1. Introduction;107
10.3;2. Materials and Methods;109
10.4;3. Conclusion;120
10.5;Acknowledgments;121
10.6;References;121
11;Chapter 5: Purification of MBP-EnvZ Fusion Proteins Using an Automated System;124
11.1;Abstract;124
11.2;1. Introduction;125
11.3;2. Comparison Between the Cytoplasmic Domains of E. coli and Typhi EnvZ Proteins;127
11.4;3. Purification of the Recombinant MBP Proteins by FPLC;129
11.5;4. SDS-PAGE Analysis of Recombinant Expressed MBP-EnvZc Protein;129
11.6;5. Results;131
11.7;6. Discussion;132
11.8;Acknowledgments;132
11.9;References;132
12;Chapter 6: Measurement of Response Regulator Autodephosphorylation Rates Spanning Six Orders of Magnitude;136
12.1;Abstract;137
12.2;1. Overview of Response Regulator Autodephosphorylation;137
12.3;2. Purification of Response Regulator Proteins;138
12.4;3. General Considerations for Autodephosphorylation Assays;139
12.5;4. Assay of Autodephosphorylation by Loss of 32P;141
12.6;5. Assay of Autodephosphorylation by Fluorescence;148
12.7;6. Assay of Autodephosphorylation by Pi Release;153
12.8;7. Assay of Autodephosphorylation from Systems of Reactions;155
12.9;8. Future Prospects;157
12.10;Acknowledgments;158
12.11;References;158
13;Chapter 7: Transmembrane Receptor Chimeras to Probe HAMP Domain Function;162
13.1;Abstract;162
13.2;1. Introduction;163
13.3;2. Design of Chimeras of HAMP Domains Fused to the AC Rv3645 Catalytic Domain;164
13.4;3. Choice of Vector and Cloning Strategy;165
13.5;4. Expression and Purification of the Chimeras;165
13.6;5. AC Assay;167
13.7;6. Example of Applications of the Method and Results;167
13.8;7. Concluding Remarks;168
13.9;Acknowledgments;169
13.10;References;169
14;Chapter 8: Light-Activated Bacterial LOV-Domain Histidine Kinases;172
14.1;Abstract;172
14.2;1. Introduction;173
14.3;2. Description of Method;174
14.4;3. Concluding Remarks and Future Perspectives;179
14.5;Acknowledgments;180
14.6;References;180
15;Chapter 9: Characterization of Bacteriophytochromes from Photosynthetic Bacteria;182
15.1;Abstract;183
15.2;1. Introduction;183
15.3;2. Cloning BphP in Expression Vector;186
15.4;3. Overexpression and Purification of BphPs;187
15.5;4. Autophosphorylation;188
15.6;5. Phosphotransfer;190
15.7;6. Gel Mobility Shift Assay and DNase I Footprint;190
15.8;7. Gene Disruption;192
15.9;8. Analysis of the Photosynthetic Phenotypes of the BphP Mutants;194
15.10;9. Photochemical Measurements;195
15.11;References;205
16;Chapter 10: Biophysical Assays for Protein Interactions in the Wsp Sensory System and Biofilm Formation;208
16.1;Abstract;208
16.2;1. Introduction;209
16.3;2. Analyses of the Shape and Molecular Weight of Proteins and Protein Complexes;210
16.4;3. Experimental Considerations;218
16.5;4. Case Studies;221
16.6;5. Concluding Remarks;227
16.7;Acknowledgments;228
16.8;References;228
17;Chapter 11: High-Throughput Screening of Bacterial Protein Localization;232
17.1;Abstract;233
17.2;1. Introduction;233
17.3;2. Pipeline Overview;234
17.4;3. Construction of a Caulobacter ORFeome;235
17.5;4. Construction of the Fluorescently Tagged Protein Library;237
17.6;5. Imaging the Caulobacter Protein Localization Library;242
17.7;6. Image Scoring and Analysis;244
17.8;7. Conclusion;248
17.9;Acknowledgments;249
17.10;References;250
18;Chapter 12: In Vitro and In Vivo Analysis of the ArcB/A Redox Signaling Pathway;252
18.1;Abstract;252
18.2;1. Introduction;253
18.3;2. In Vitro Characterization of the Arc TCS;255
18.4;3. In Vivo Characterization of the Arc TCS;267
18.5;4. Conclusions;273
18.6;Acknowledgments;273
18.7;References;273
19;Chapter 13: Potassium Sensing Histidine Kinase in Bacillus subtilis;276
19.1;Abstract;276
19.2;1. Introduction;277
19.3;2. Screen for Molecules that Stimulate KinC Sensor Kinase;278
19.4;3. Quantitative Analysis of the Activation of KinC;283
19.5;4. Structural Analysis of KinC;287
19.6;5. Monitoring the Signals Using Indirect Measurements;291
19.7;6. Applications of the System Signal-Kinase;292
19.8;7. Conclusions;295
19.9;References;296
20;Chapter 14: Two-Component Systems and Regulation of Developmental Progression in Myxococcus xanthus;300
20.1;Abstract;301
20.2;1. Introduction;301
20.3;2. Generation of In-Frame Deletions or Point Mutations in the M. xanthus Genome;304
20.4;3. Phenotype Assays for Analysis of M. xanthus Development;310
20.5;4. Expression Analysis;314
20.6;5. In Vitro Biochemical Analysis of TCS Proteins;317
20.7;Acknowledgments;322
20.8;References;322
21;Chapter 15: Two-Component Signaling to the Stress MAP Kinase Cascade in Fission Yeast;326
21.1;Abstract;326
21.2;1. Introduction;327
21.3;2. Detection of Protein Interactions in the H2O2 Signaling Pathway;329
21.4;3. Detection of Cysteine S-Thiolation in Tdh1 GAPDH;333
21.5;Acknowledgments;335
21.6;References;335
22;Chapter 16: Genetic and Biochemical Analysis of the SLN1 Pathway in Saccharomyces cerevisiae;338
22.1;Abstract;338
22.2;1. Introduction;339
22.3;2. Materials and Methods;344
22.4;Acknowledgments;362
22.5;References;362
23;Chapter 17: Analysis of Mitogen-Activated Protein Kinase Phosphorylation in Response to Stimulation of Histidine Kinase Signa;366
23.1;Abstract;366
23.2;1. Introduction;367
23.3;2. Growth of Cultures and Exposure to Hyperosmotic Conditions or Fungicide;369
23.4;3. Mitogen-Activated Protein Kinase Assay;371
23.5;4. Adapting the MAPK Assay;378
23.6;5. Discussion;378
23.7;Acknowledgments;379
23.8;References;379
24;Chapter 18: Biochemical Characterization of Plant Hormone Cytokinin-Receptor Histidine Kinases Using Microorganisms;382
24.1;Abstract;382
24.2;1. Introduction;383
24.3;2. Characterization of Plant TCS Components in E. coli;387
24.4;3. Protocol for Histidine Kinase Assays in E. coli;390
24.5;4. Protocol of Cytokinin-Binding Assay with Intact E. coli Cells;392
24.6;5. Preparation of Radioactive Phospho-HPt Factor, and In Vitro Assay of Phosphotransfer to RR;392
24.7;6. Characterization of Plant TCS Components in S. cerevisiae;394
24.8;7. Protocol of Histidine Kinase Assay in S. cerevisiae;396
24.9;8. Protocol of HPt Factor Assay in S. cerevisiae;397
24.10;9. Protocol of Cytokinin-Binding Assay by Using S. pombe Membranes Enriched in AHK4/CRE1;397
24.11;Acknowledgments;398
24.12;References;398
25;Chapter 19: Characterization of Pseudo-Response Regulators in Plants;404
25.1;Abstract;404
25.2;1. The Arabidopsis Circadian Clock;405
25.3;2. Detection of PRR Proteins;407
25.4;3. Localization of PRR Proteins;411
25.5;4. Exploring the Circadian Phenotypes of prr Mutants;414
25.6;5. Concluding Remarks;422
25.7;Acknowledgments;422
25.8;References;422
26;Chapter 20: Reversible Histidine Phosphorylation in Mammalian Cells;426
26.1;Abstract;426
26.2;1. Introduction;427
26.3;2. Analysis of Phosphorylation and Dephosphorylation of Histidine Residues In Vitro;428
26.4;3. Functional Analysis of NDPK/PHPT-1 Regulated Systems in Living Cells;434
26.5;References;447
27;Chapter 21: Histidine Phosphorylation in Histones and in Other Mammalian Proteins;450
27.1;Abstract;450
27.2;1. Introduction;451
27.3;2. Chemical Phosphorylation of Histone H4 Proteins and Peptides;452
27.4;3. Detection of Phosphohistidine-Phosphoamino Acid Analysis;453
27.5;4. Filter-Based Assay of Alkali-Stable, Acid-Labile Protein Phosphorylation (Nytran Assay);462
27.6;5. In-Gel Kinase Assay;463
27.7;6. Phosphorylation and Thiophosphorylation Site Analysis by Edman Sequencing;466
27.8;7. Mass Spectrometric Phosphopeptide Analysis;468
27.9;Acknowledgments;471
27.10;References;471
28;Author Index;474
29;Subject Index;482



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.