Cracknell / Ter Haar | Applied Group Theory | E-Book | sack.de
E-Book

E-Book, Englisch, 430 Seiten, Web PDF

Cracknell / Ter Haar Applied Group Theory

Selected Readings in Physics
1. Auflage 2016
ISBN: 978-1-4831-4938-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

Selected Readings in Physics

E-Book, Englisch, 430 Seiten, Web PDF

ISBN: 978-1-4831-4938-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



Selected Readings in Physics: Applied Group Theory provides information pertinent to the fundamental aspects of applied group theory. This book discusses the properties of symmetry of a system in quantum mechanics. Organized into two parts encompassing nine chapters, this book begins with an overview of the problem of elastic vibrations of a symmetric structure. This text then examines the numbers, degeneracies, and symmetries of the normal modes of vibration. Other chapters consider the conditions under which a polyatomic molecule can have a stable equilibrium configuration when its electronic state has orbital degeneracy. This book discusses as well the effect of an electric field having a given symmetry upon an atom. The final chapter deals with the symmetry of crystals with a magnetic moment. This book is intended to be suitable for final-year students and fresh postgraduate students in physics. Physicists and researcher workers will also find this book extremely useful.

Cracknell / Ter Haar Applied Group Theory jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Applied Group Theory;4
3;Copyright Page ;5
4;Table of Contents;6
5;Preface;10
6;PART I;14
6.1;Chapter 1. Symmetry;16
6.1.1;1.1. Symmetry Operations;16
6.1.2;1.2. Definition of a Group;20
6.1.3;1.3. Symmetry in Nature;22
6.2;Chapter 2. Theory of Groups;25
6.2.1;2.1. Further Definitions;25
6.2.2;2.2. Subgroups;27
6.2.3;2.3. Classes;27
6.2.4;2.4. Matrices;31
6.2.5;2.5. Matrices and the Symmetry Operations of the Square;32
6.2.6;2.6. Matrix Representations of a Group;34
6.2.7;2.7. Irreducible (Matrix) Representations of a Group;39
6.2.8;2.8. The Deduction of the Irreducible Representations of a Group;41
6.2.9;2.9. The Direct Product of Two Groups;49
6.2.10;2.10. Group Theory and Quantum Mechanics, Wigner's Theorem;51
6.3;Chapter 3. Crystallographic Groups;55
6.3.1;3.1. Point Groups;55
6.3.2;3.2. The Derivation of the Point Groups and their Character Tables;59
6.3.3;3.3. The Basis of a Representation;65
6.3.4;3.4. Bravais Lattices;69
6.3.5;3.5. Space Groups;72
6.3.6;3.6. Seitz Space-group Symbols;74
6.4;Chapter 4. The Rotation, Symmetric and Lorentz Groups;79
6.4.1;4.1. The Rotation Group;79
6.4.2;4.2. The Representations of the Rotation Group;83
6.4.3;4.3. The Spherical Harmonics and the Rotation Group;88
6.4.4;4.4. The Permutation Group, or Symmetric Group, S(n);92
6.4.5;4.5. Young's Tableaux;94
6.4.6;4.6. Special Relativity and the Lorentz Group;98
6.5;Chapter 5. Vibrations in Molecules and Solids;104
6.5.1;5.1. Vibrations of Molecules, Normal Modes;104
6.5.2;5.2. Example, the Normal Modes of the Methane Molecule;105
6.5.3;5.3. Vibrations of Solids, Phonons;120
6.5.4;5.4. Brillouin Zone Theory;123
6.5.5;5.5. Infrared and Raman Activity of the Normal Modes;126
6.6;Chapter 6. Electronic States in Atoms, Molecules and Solids;132
6.6.1;6.1. Wave Functions of Electrons in Atoms;132
6.6.2;6.2. Wave Functions of Electrons in Molecules;135
6.6.3;6.3. The Jahn–Teller Effect;144
6.6.4;6.4. The Splitting of Atomic Energy Levels in Crystals;145
6.6.5;6.5. Wave Functions of Electrons in Solids;150
6.7;Chapter 7. Atoms, Nuclei and Elementary Particles;156
6.7.1;7.1. The Principle of Antisymmetry and the Pauli Exclusion Principle;156
6.7.2;7.2. The Spherical Harmonics and Angular Momentum;158
6.7.3;7.3. Selection Rules for Electrons in Atoms;161
6.7.4;7.4. Spin, SU(2);166
6.7.5;7.5. Nuclei, Isobaric Spin;169
6.7.6;7.6. "Elementary" Particles, SU(3), etc;174
6.8;Chapter 8. Further Topics;182
6.8.1;8.1. Double Groups;182
6.8.2;8.2. Magnetic Point Groups and Magnetic Space Groups;186
6.8.3;8.3. Time Reversal and the Kramers Degeneracy;192
6.8.4;8.4. Symmetry Properties of Tensors;194
6.8.5;8.5. Waveguide Junctions;198
6.8.6;8.6. Campanological Groups;202
6.9;GUIDED BIBLIOGRAPHY;205
6.10;REFERENCES;206
7;PART II;210
7.1;Chapter 1. The Elastic Characteristic Vibrations of Symmetrical Systems;212
7.2;Chapter 2. The Degeneracy, Selection Rules, and Other Properties of the Normal Vibrations of Certain Polyatomic Molecules;226
7.2.1;Explanation of Tables;228
7.2.2;Discussion of Results;230
7.2.3;Molecules with Three Atoms;232
7.2.4;Molecules with Four Atoms;233
7.2.5;Molecules with Five Atoms;234
7.2.6;Molecules with Six Atoms;237
7.2.7;Molecules with Seven Atoms;238
7.2.8;Molecules with Eight Atoms;243
7.2.9;Molecules with Nine Atoms;245
7.3;Chapter 3. Stability of Polyatomic Molecules in Degenerate Electronic States. I Orbital Degeneracy;246
7.3.1;Introduction;246
7.3.2;1. Two Examples;247
7.3.3;2. General Theorem;250
7.3.4;3. Mathematical Formulation and Group-theoretical Considerations;251
7.3.5;4. Proof of General Theorem;254
7.3.6;5. Conclusion;266
7.3.7;Summary;267
7.3.8;References;267
7.4;Chapter 4. Splitting of Terms in Crystals;269
7.4.1;I. Solution by Theory of Groups;272
7.4.2;II. The Eigenfunctions to Zero-order Approximation in the Crystal;295
7.5;Chapter 5. On the Reduction of Space Groups;310
7.5.1;Introduction;310
7.5.2;1. The Theory of Space Groups;311
7.5.3;2. A Theorem Concerning the Reduction of Finite Solvable Groups;316
7.5.4;3. Additional Simplifying Developments;321
7.5.5;4. Concerning Physical Applications;325
7.6;Chapter 6. Theory of Brillouin Zones and Symmetry Properties of Wave Functions in Crystals;327
7.6.1;I;327
7.6.2;II;330
7.6.3;III;333
7.6.4;IV;337
7.6.5;V;338
7.6.6;VI. Body-centered Cubic Lattice;345
7.6.7;VII. Face-centered Cubic Lattice;348
7.7;Chapter 7. On the Consequences of the Symmetry of the Nuclear Hamiltonian on the Spectroscopy of Nuclei;352
7.7.1;1;352
7.7.2;2;355
7.7.3;3;358
7.7.4;4;369
7.7.5;5;375
7.7.6;6;381
7.8;Chapter 8. "Double" Crystallographic Groups;383
7.9;Chapter 9. Magnetic Symmetry of Crystals;392
7.9.1;1. Introduction;392
7.9.2;2. Some Properties of the Transformations Introduced Above. Statement of the Problem;394
7.9.3;3. Algorithm for Constructing the Point Groups;395
7.9.4;4. List of Groups of Point Transformations for the Symmetry of Crystals with a Mean Current Density;401
7.9.5;5. Possible Applications of the Groups of Point Symmetry Transformations of Crystals;403
8;APPENDIX;405
8.1;The Character Tables of the Thirty-two Point Groups;405
8.2;Hints to Solutions of the Exercises;410
9;INDEX;426



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.