Cpalka / Cpalka | Design of Interpretable Fuzzy Systems | Buch | 978-3-319-85006-1 | sack.de

Buch, Englisch, Band 684, 196 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 324 g

Reihe: Studies in Computational Intelligence

Cpalka / Cpalka

Design of Interpretable Fuzzy Systems


Softcover Nachdruck of the original 1. Auflage 2017
ISBN: 978-3-319-85006-1
Verlag: Springer International Publishing

Buch, Englisch, Band 684, 196 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 324 g

Reihe: Studies in Computational Intelligence

ISBN: 978-3-319-85006-1
Verlag: Springer International Publishing


This book shows that the term “interpretability” goes far beyond the concept of readability of a fuzzy set and fuzzy rules. It focuses on novel and precise operators of aggregation, inference, and defuzzification leading to flexible Mamdani-type and logical-type systems that can achieve the required accuracy using a less complex rule base. The individual chapters describe various aspects of interpretability, including appropriate selection of the structure of a fuzzy system, focusing on improving the interpretability of fuzzy systems designed using both gradient-learning and evolutionary algorithms. It also demonstrates how to eliminate various system components, such as inputs, rules and fuzzy sets, whose reduction does not adversely affect system accuracy. It illustrates the performance of the developed algorithms and methods with commonly used benchmarks. The book provides valuable tools for possible applications in many fields including expert systems, automatic control and robotics.
Cpalka / Cpalka Design of Interpretable Fuzzy Systems jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Preface.- Acknowledgements.- Chapter1: Introduction.- Chapter2: Selected topics in fuzzy systems designing.- Chapter3: Introduction to fuzzy system interpretability.- Chapter4: Improving fuzzy systems interpretability by appropriate selection of their structure.- Chapter5: Interpretability of fuzzy systems designed in the process of gradient learning.- Chapter6: Interpretability of fuzzy systems designed in the process of evolutionary learning.- Chapter7: Case study: interpretability of fuzzy systems applied to nonlinear modelling and control.- Chapter8: Case study: interpretability of fuzzy systems applied to identity veri?cation.- Chapter9: Concluding remarks and future perspectives.- Index.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.