Couairon / Dubietis | Ultrafast Supercontinuum Generation in Transparent Solid-State Media | Buch | 978-3-030-14994-9 | www2.sack.de

Buch, Englisch, 125 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 247 g

Reihe: SpringerBriefs in Physics

Couairon / Dubietis

Ultrafast Supercontinuum Generation in Transparent Solid-State Media


1. Auflage 2019
ISBN: 978-3-030-14994-9
Verlag: Springer International Publishing

Buch, Englisch, 125 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 247 g

Reihe: SpringerBriefs in Physics

ISBN: 978-3-030-14994-9
Verlag: Springer International Publishing


This book presents the underlying physical picture and an overview of the state of the art of femtosecond supercontinuum generation in various transparent solid-state media, ranging from wide-bandgap dielectrics to semiconductor materials, and across various parts of the optical spectrum, from the ultraviolet to the mid-infrared. A particular emphasis is placed on the most recent experimental developments: multioctave supercontinuum generation with pumping in the mid-infrared spectral range, spectral control, power and energy scaling of broadband radiation and the development of simple, flexible and robust pulse compression techniques, which deliver few optical cycle pulses and which could be readily implemented in a variety of modern ultrafast laser systems. The expected audience includes graduate students, professionals and scientists working in the field of laser-matter interactions and ultrafast nonlinear optics.

Couairon / Dubietis Ultrafast Supercontinuum Generation in Transparent Solid-State Media jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Preface

Introduction

Part I. Physical picture of supercontinuum generation

Chapter 1. Governing physical effects

                1.1. Self-focusing of laser beams

                1.2. Self-phase modulation of laser pulses

                1.3. Nonlinear absorption and ionization

                1.4. Plasma effects

1.4.1. Transition of electrons from the valence to the conduction band

                1.4.2. Refractive index change

                1.4.3. Plasma induced phase modulation

                1.4.4. The Drude-Lorentz model

                1.5. Intensity clamping

                1.6. Chromatic dispersion

                1.7. Self-steepening and space-time focusing

                1.8. Four wave mixing and phase matching

                1.9. Conical emission

Chapter 2. Femtosecond filamentation in solid state media

                2.1. Universal features

                2.2. Numerical model

                2.3. Supercontinuum generation under normal GVD

                2.4. Supercontinuum generation under anomalous GVD

                2.5. Supercontinuum generation under near zero GVD

                2.6. Comparison with supercontinuum generation in a fiber

Part 2. Overview of the experimental results

Chapter 3. General practical considerations

                3.1. Materials

                3.2. Numerical aperture

                3.3. Stability issues

                3.4. Focusing-defocusing cycles

                3.5. Multiple filamentation

Chapter 4. Experimental results

                4.1. Water as prototypical nonlinear medium

                4.2. Glasses

                4.3. Alkali metal fluorides

                4.4. Laser hosts

                4.5. Crystals possessing second-order nonlinearity

                4.6. Semiconductors

                4.7. Other nonlinear media

Chapter 5. New developments

                5.1. Power and energy scaling

                5.2. Pulse compression

                5.3. Supercontinuum generation with picosecond laser pulses

                5.4. Supercontinuum generation with non-Gaussian beams

5.5. Control of supercontinuum generation

References


Audrius Dubietis graduated from Vilnius University in 1989, and was awarded a PhD in 1996. He has been professor in the Department of Quantum Electronics, Laser Research Center, Vilnius University, since 2006. His areas of research areas include nonlinear optics, laser physics, atmospheric phenomena, physics, optics, and astronomy. In 1992, together with G. Jonušauskas and A. Piskarskas, he proposed a method of parametric amplification of phase-modulated light pulses, which is implemented by the most important ultra-powerful laser centers worldwide. He has published more than 90 scientific articles in the peer-reviewed literature.Arnaud Couairon is a research director at the CNRS. He studied at Ecole Normale Supérieure in Paris and did his Ph.D. at Ecole Polytechnique (1997) on the dynamics of open shear flows. Since 1997, he has been working on ultrashort laser pulse filamentation and associated phenomena. He developed a virtual numerical laboratory for simulating the nonlinear propagation of ultrashort laser pulses in gases, liquids, or solids. His research interests include laser-matter interaction, ultrafast and nonlinear optics, and plasma physics.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.