Cotta / Sörensen / Sevaux | Adaptive and Multilevel Metaheuristics | Buch | 978-3-642-09833-8 | sack.de

Buch, Englisch, Band 136, 275 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 446 g

Reihe: Studies in Computational Intelligence

Cotta / Sörensen / Sevaux

Adaptive and Multilevel Metaheuristics

Buch, Englisch, Band 136, 275 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 446 g

Reihe: Studies in Computational Intelligence

ISBN: 978-3-642-09833-8
Verlag: Springer


One of the keystones in practical metaheuristic problem-solving is the fact that tuning the optimization technique to the problem under consideration is crucial for achieving top performance. This tuning/customization is usually in the hands of the algorithm designer, and despite some methodological attempts, it largely remains a scientific art. Transferring a part of this customization effort to the algorithm itself -endowing it with smart mechanisms to self-adapt to the problem- has been a long pursued goal in the field of metaheuristics.

These mechanisms can involve different aspects of the algorithm, such as for example, self-adjusting the parameters, self-adapting the functioning of internal components, evolving search strategies, etc.

Recently, the idea of hyperheuristics, i.e., using a metaheuristic layer for adapting the search by selectively using different low-level heuristics, has also been gaining popularity. This volume presents recent advances in the area of adaptativeness in metaheuristic optimization, including up-to-date reviews of hyperheuristics and self-adaptation in evolutionary algorithms, as well as cutting edge works on adaptive, self-adaptive and multilevel metaheuristics, with application to both combinatorial and continuous optimization.

Cotta / Sörensen / Sevaux Adaptive and Multilevel Metaheuristics jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Reviews of the Field.- Hyperheuristics: Recent Developments.- Self-Adaptation in Evolutionary Algorithms for Combinatorial Optimisation.- New Techniques and Applications.- An Efficient Hyperheuristic for Strip-Packing Problems.- Probability-Driven Simulated Annealing for Optimizing Digital FIR Filters.- RASH: A Self-adaptive Random Search Method.- Market Based Allocation of Transportation Orders to Vehicles in Adaptive Multi-objective Vehicle Routing.- A Simple Evolutionary Algorithm with Self-adaptation for Multi-objective Nurse Scheduling.- Individual Evolution as an Adaptive Strategy for Photogrammetric Network Design.- Adaptive Estimation of Distribution Algorithms.- Initialization and Displacement of the Particles in TRIBES, a Parameter-Free Particle Swarm Optimization Algorithm.- Evolution of Descent Directions.- “Multiple Neighbourhood” Search in Commercial VRP Packages: Evolving Towards Self-Adaptive Methods.- Automated Parameterisation of a Metaheuristic for the Orienteering Problem.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.