Buch, Englisch, 278 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 544 g
Buch, Englisch, 278 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 544 g
ISBN: 978-1-108-47744-4
Verlag: Cambridge University Press
The massive volume of data generated in modern applications can overwhelm our ability to conveniently transmit, store, and index it. For many scenarios, building a compact summary of a dataset that is vastly smaller enables flexibility and efficiency in a range of queries over the data, in exchange for some approximation. This comprehensive introduction to data summarization, aimed at practitioners and students, showcases the algorithms, their behavior, and the mathematical underpinnings of their operation. The coverage starts with simple sums and approximate counts, building to more advanced probabilistic structures such as the Bloom Filter, distinct value summaries, sketches, and quantile summaries. Summaries are described for specific types of data, such as geometric data, graphs, and vectors and matrices. The authors offer detailed descriptions of and pseudocode for key algorithms that have been incorporated in systems from companies such as Google, Apple, Microsoft, Netflix and Twitter.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Signalverarbeitung, Bildverarbeitung, Scanning
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Algorithmen & Datenstrukturen
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Datenanalyse, Datenverarbeitung
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken
Weitere Infos & Material
1. Introduction; 2. Summaries for sets; 3. Summaries for multisets; 4. Summaries for ordered data; 5. Geometric summaries; 6. Graph summaries; 7. Vector, matrix and linear algebraic summaries; 8. Summaries over distributed data; 9. Other uses of summaries; 10. Lower bounds for summaries.