Cordes | Precisely Predictable Dirac Observables | E-Book | sack.de
E-Book

E-Book, Englisch, Band 154, 269 Seiten, eBook

Reihe: Fundamental Theories of Physics

Cordes Precisely Predictable Dirac Observables


2007
ISBN: 978-1-4020-5169-2
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 154, 269 Seiten, eBook

Reihe: Fundamental Theories of Physics

ISBN: 978-1-4020-5169-2
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark



This work presents a Clean Quantum Theory of the Electron, based on Dirac’s equation. "Clean" in the sense of a complete mathematical explanation of the well known paradoxes of Dirac’s theory and a connection to classical theory. It discusses the existence of an accurate split between physical states belonging to the electron and to the positron as well as the fact that precisely predictable observables must preserve this split.

Cordes Precisely Predictable Dirac Observables jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Preface. Introduction. 1: Dirac Observables and psi do-s. 1.0 Introduction. 1.1 Some Special Distributions. 1.2. Strictly Classical Pseudodifferential Operators. 1.3. Ellipticity and Parametrix Construction. 1.4. L2-Boundedness and Weighted Sobolev Spaces 1.5. The Parametrix Method for Solving ODE-s 1.6. More on General psi do-Results. 2: Why Should Observables be Pseudodifferential? 2.0. Introduction. 2.1. Smoothness of Lie Group Action on psi do-s. 2.2. Rotation and Dilation Smoothness. 2.3. General Order and General H3-Spaces. 2.4. A Useful Result on L2-Inverses and Square Roots. 3: Decoupling with psi do-s. 3.0. Introduction. 3.1. The Foldy-Wouthuysen Transform. 3.2. Unitary Decoupling Modulo O (-infinity). 3.3. Relation to Smoothness of the Heisenberg Transform. 3.4. Some Comments Regarding Spectral Theory. 3.5. Complete Decoupling for V(x) not equivalent to 0. 3.6. Split and Decoupling are not Unique - Summary. 3.7. Decoupling for Time Dependent Potentials. 4: Smooth Pseudodifferential Heisenberg Representation. 4.0. Introduction. 4.1. Dirac Evolution with Time-Dependent Potentials. 4.2. Observables with Smooth Heisenberg Representation. 4.3. Dynamical Observables with Scalar Symbol. 4.4. Symbols Non-Scalar on S plusminus. 4.5. Spin and Current. 4.6. Classical Orbits for Particle and Spin. 5: The Algebra of Precisely Predictable Observables. 5.0. Introduction. 5.1. A Precise Result on psi do-Heisenberg Transforms. 5.2. Relations between the Algebras P(t). 5.3. About Prediction of Observables again. 5.4. Symbol Propagation along Flows. 5.5. The Particle Flows Components are Symbols. 5.6. A Secondary Correction for the Electrostatical Potential. 5.7. Smoothness and FW-Decoupling. 5.8. The Final Algebra of Precisely Predictables. 6: Lorentz Covariance of Precise Predictability. 6.0. Introduction. 6.1. A New Time Frame for a Dirac State. 6.2. Transformation of P and PX for Vanishing Fields. 6.3. Relating Hilbert Spaces; Evolution of the Spaces H' and H. 6.4. The General Time-Independent Case. 6.5. The Fourier Integral Operators around R. 6.6. Decoupling with Respect to H' and H(t). 6.7. A Complicated ODE with psi do-Coefficients. 6.8 Integral Kernels of e-functions. 7: Spectral Theory of Precisely Predictable Approximations. 7.0. Introduction. 7.1. A Second Order Model Program. 7.2. The Corrected Location Observable. 7.3. Electrostatic Potential and Relativistic Mass. 7.4. Separation of Variables in Spherical Coordinates. 7.5. Highlights of the Proof of Theorem 7.3.2. 7.6. The Regular Singularities. 7.7. The Singularity at infinity. 7.8. Final Arguments. 8: Dirac and Schrödinger Equations; a Comparison. 8.0. Introduction. 8.1. What is a C*-Algebra with Symbol? 8.2. Exponential Actions on A. 8.3. Strictly Classical Pseudodifferential Operators. 8.4. Characteristic Flow and Particle Flow. 8.5. The Harmonic Oscillator. References. General Notations. Index.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.