Coqueret / Guida | Machine Learning for Factor Investing | Buch | 978-0-367-63974-7 | sack.de

Buch, Englisch, 358 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 2000 g

Reihe: Chapman and Hall/CRC Financial Mathematics Series

Coqueret / Guida

Machine Learning for Factor Investing

Python Version
1. Auflage 2023
ISBN: 978-0-367-63974-7
Verlag: Chapman and Hall/CRC

Python Version

Buch, Englisch, 358 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 2000 g

Reihe: Chapman and Hall/CRC Financial Mathematics Series

ISBN: 978-0-367-63974-7
Verlag: Chapman and Hall/CRC


Machine learning (ML) is progressively reshaping the fields of quantitative finance and algorithmic trading. ML tools are increasingly adopted by hedge funds and asset managers, notably for alpha signal generation and stocks selection. The technicality of the subject can make it hard for non-specialists to join the bandwagon, as the jargon and coding requirements may seem out-of-reach. Machine learning for factor investing: Python version bridges this gap. It provides a comprehensive tour of modern ML-based investment strategies that rely on firm characteristics.

The book covers a wide array of subjects which range from economic rationales to rigorous portfolio back-testing and encompass both data processing and model interpretability. Common supervised learning algorithms such as tree models and neural networks are explained in the context of style investing and the reader can also dig into more complex techniques like autoencoder asset returns, Bayesian additive trees and causal models.

All topics are illustrated with self-contained Python code samples and snippets that are applied to a large public dataset that contains over 90 predictors. The material is available online so that readers can reproduce and enhance the examples at their convenience. If you have even a basic knowledge of quantitative finance, this combination of theoretical concepts and practical illustrations will help you learn quickly and deepen your financial and technical expertise.

Coqueret / Guida Machine Learning for Factor Investing jetzt bestellen!

Zielgruppe


Professional Practice & Development

Weitere Infos & Material


Part 1. Introduction 1. Notations and data 2. Introduction 3. Factor investing and asset pricing anomalies 4. Data preprocessing Part 2. Common supervised algorithms 5. Penalized regressions and sparse hedging for minimum variance portfolios 6. Tree-based methods 7. Neural networks 8. Support vector machines 9. Bayesian methods Part 3. From predictions to portfolios 10. Validating and tuning 11. Ensemble models 12. Portfolio backtesting Part 4. Further important topics 13. Interpretability 14. Two key concepts: causality and non-stationarity 15. Unsupervised learning 16. Reinforcement learning Part 5. Appendix 17. Data description 18. Solutions to exercises


Guillaume Coqueret is associate professor of finance and data science at EMLYON Business School. His recent research revolves around applications of machine learning tools in financial economics.

Tony Guida is co-head of Systematic Macro at RAM Active Investments. He is the editor and co-author of Big Data and Machine Learning in Quantitative Investment.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.