Constantinescu | Schur Parameters, Factorization and Dilation Problems | Buch | 978-3-0348-9910-9 | sack.de

Buch, Englisch, Band 82, 254 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 468 g

Reihe: Operator Theory: Advances and Applications

Constantinescu

Schur Parameters, Factorization and Dilation Problems


1996
ISBN: 978-3-0348-9910-9
Verlag: Birkhäuser Basel

Buch, Englisch, Band 82, 254 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 468 g

Reihe: Operator Theory: Advances and Applications

ISBN: 978-3-0348-9910-9
Verlag: Birkhäuser Basel


The subject of this book is about the ubiquity of the Schur parameters, whose introduction goes back to a paper of I. Schur in 1917 concerning an interpolation problem of C. Caratheodory. What followed there appears to be a truly fascinating story which, however, should be told by a professional historian. Here we provide the reader with a simplified version, mostly related to the contents of the book. In the twenties, thf~ theory of orthogonal polynomials on the unit circle was developed by G. Szego and the formulae relating these polynomials involved num­ bers (usually called Szego parameters) similar to the Schur parameters. Mean­ while, R. Nevanlinna and G. Pick studied the theory of another interpolation problem, known since then as the Nevanlinna-Pick problem, and an algorithm similar to Schur's one was obtained by Nevanlinna. In 1957, Z. Nehari solved OO an L problem which contained both Caratheodory-Schur and Nevannlina-Pick problems as particular cases. Apparently unrelated work of H. Weyl, J. von Neu­ mann and K. Friedericks concerning selfadjoint extensions of symmetric operators was connected to interpolation by M. A. Naimark and M. G Krein using some gen­ eral dilation theoretic ideas. Classical moment problems, like the trigonometric moment and Hamburger moment problems, were also related to these topics and a comprehensive account of what can be called the classical period has appeared in the monograph of M. G. Krein and A. A. Nudelman, [KN].

Constantinescu Schur Parameters, Factorization and Dilation Problems jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1 Schur Parameters and Positive Block Matrices.- 1.1 Preliminaries.- 1.2 Renorming Hilbert Spaces and Elementary Rotations.- 1.3 Kolmogorov Decompositions. I.- 1.4 Row and Column Contractions.- 1.5 The Structure of Positive Definite Kernels.- 1.6 Kolmogorov Decompositions. II.- 1.7 Notes.- 2 Models for Triangular Contractions.- 2.1 Preliminaries.- 2.2 The Structure of Triangular Contractions.- 2.3 Realization of Triangular Contractions.- 2.4 Unitary Couplings and Operator Ranges.- 2.5 Modeling Families of Contractions.- 2.6 Notes.- 3 Moment Problems and Interpolation.- 3.1 A Survey on Completion Problems.- 3.2 Extensions of Partial Isometries.- 3.3 Krein’s Formula.- 3.4 Moment Problems.- 3.5 The Commutant Lifting Method.- 3.6 Notes.- 4 Displacement Structures.- 4.1 Structured Matrices.- 4.2 Generalized Schur Algorithm.- 4.3 Discrete Transmission-Line Models.- 4.4 Displacement Structure and Completion Problems.- 4.5 Other Applications.- 4.6 Notes.- 5 Factorization of Positive Definite Kernels.- 5.1 Spectral Factors.- 5.2 Examples.- 5.3 Schur’s Algorithm, Szegö’s Theory and Spectral Factors.- 5.4 Maximum Entropy.- 5.5 Notes.- 6 Nonstationary Processes.- 6.1 Modeling Nonstationary Processes.- 6.2 Kolmogorov-Wiener Prediction.- 6.3 Other Prediction Problems.- 6.4 Szegö’s Limit Theorems.- 6.5 Notes.- 7 Graphs and Completion Problems.- 7.1 Preliminaries.- 7.2 Completing Positive Partial Matrices. I.- 7.3 Completing Positive Partial Matrices. II.- 7.4 Completing Contractive Partial Matrices.- 7.5 Notes.- 8 Determinantal Formulae and Optimization.- 8.1 Determinantal Formulae.- 8.2 Maximum Determinant Formulae.- 8.3 Maximum Determinant for Nonchordal Graphs.- 8.4 Inheritance Principles.- 8.5 Notes.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.