Constanda / Saranen / Seikkala | Integral Methods in Science and Engineering | Buch | 978-0-582-30406-2 | sack.de

Buch, Englisch, 248 Seiten, Format (B × H): 163 mm x 248 mm, Gewicht: 426 g

Reihe: Chapman & Hall/CRC Research Notes in Mathematics Series

Constanda / Saranen / Seikkala

Integral Methods in Science and Engineering

Buch, Englisch, 248 Seiten, Format (B × H): 163 mm x 248 mm, Gewicht: 426 g

Reihe: Chapman & Hall/CRC Research Notes in Mathematics Series

ISBN: 978-0-582-30406-2
Verlag: Chapman and Hall/CRC


Based on proceedings of the International Conference on Integral Methods in Science and Engineering, this collection of papers addresses the solution of mathematical problems by integral methods in conjunction with approximation schemes from various physical domains. Topics and applications include: wavelet expansions, reaction-diffusion systems, variational methods, fracture theory, boundary value problems at resonance, micromechanics, fluid mechanics, combustion problems, nonlinear problems, elasticity theory, and plates and shells.
Constanda / Saranen / Seikkala Integral Methods in Science and Engineering jetzt bestellen!

Weitere Infos & Material


Mathematical Modeling of N-Body Quantum Scattering Processes Microhydrodynamics of Sharp Corners and Edges Acoustic Scattering by Irregular Obstacles On Generalized Inverse Steklov Problems A Hybrid Root Finder Volterra Type Integral Geometry Problems Inversionof the X-Ray Transform and the Radon Transform with Incomplete Data Reconstructing a Function by means of Integrals over a Family of Conical Surfaces On the use of Wavelet Expansions and the Conjugate Gradient Method for Solving First Kind Integral Equations Optimal Algorithms for the Calculation of Singular Integrals An Order One Approximate Method of Solution of Differential and Integral Equations A Multigrid Method for Solving Reaction-Diffusion Systems Time-Dependent Bending of Plates with Transverse Shear Deformation Polarization Gradient in Piezoelectric Micropolar Elasticity Thermoelastic Stress Separation via Poisson Equation Solution by means of the Boundary Element Method On Neutral Functional Differential Equations with Causal Operations A Semi-Analytic Method for the Study of Acoustic Pulse Propagation in Inhomogeneous Elastic 1-D Media Efficient Finite Elements for the Numerical Approximation of Cylindrical Shells Error Estimates for Computing Fixed Densities of Markov Integral Operators A Modified Monte Carlo Approach to the Approximation of Invariant Measures Acceleration Waves in von Karman Plate Theory Dynamics and Resonance of a Nonlinear Mechanical Oscillator Subjected to Parametric and External Excitation On the Vibration of Helical Springs A Two-Dimensional Numerical Model of Chemotaxis Asymptotic Analysis of Fracture Theory for Layered Composites in Compression (The Plane Problem) Existence and Regularity of Weak Solutions to the Displacement Boundary Value Problem of Nonlinear Elastostatics On Convergence and Uniqueness of Microscale Heat Transfer Equation On Numerical Approximations of a Frictionless Contact Problem for Elastic-Viscoplastic Materials A Panel Clustering Method for 3-D Elastostatics using Spherical Harmonics Extensions of Constrained Least-Squares for Obtaining Regularized Solutions to First-Kind Integral Equations Existence and Nonexistence Results for some Boundary Value Problems at Resonance Analytic Investigation of Thick Anisotropic Plates with Undulating Surfaces On Stoke's Nonlinear Integral Wave Equation - continued.


Constanda, Christian; Saranen, Jukka; Seikkala, S


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.