Methodologies and Applications
Buch, Englisch, 355 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 563 g
ISBN: 978-3-030-66893-8
Verlag: Springer International Publishing
The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis.
This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsinformatik, SAP, IT-Management
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Big Data
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Wirtschaftsinformatik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
Weitere Infos & Material
Data Science Technologies in Economics and Finance: A Gentle Walk-In.- Supervised Learning for the Prediction of Firm Dynamics.- Opening the Black Box: Machine Learning Interpretability and Inference Tools with an Application to Economic Forecasting.- Machine Learning for Financial Stability.- Sharpening the Accuracy of Credit Scoring Models with Machine Learning Algorithms.- Classifying Counterparty Sector in EMIR Data.- Massive Data Analytics for Macroeconomic Nowcasting.- New Data Sources for Central Banks.- Sentiment Analysis of Financial News: Mechanics and Statistics.- Semi-supervised Text Mining for Monitoring the News About the ESG Performance of Companies.- Extraction and Representation of Financial Entities from Text.- Quantifying News Narratives to Predict Movements in Market Risk.- Do the Hype of the Benefits from Using New Data Science Tools Extend to Forecasting Extremely Volatile Assets?.- Network Analysis for Economics and Finance: An application to Firm Ownership.