E-Book, Englisch, Band 490, 432 Seiten, Web PDF
Reihe: Methods in Enzymology
Conn The Unfolded Protein Response and Cellular Stress, Part B
1. Auflage 2011
ISBN: 978-0-12-385115-4
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 490, 432 Seiten, Web PDF
Reihe: Methods in Enzymology
ISBN: 978-0-12-385115-4
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
This volume provides descriptions of the occurrence of the UPR, methods used to assess it, pharmacological tools and other methodological approaches to analyze its impact on cellular regulation. The authors explain how these methods are able to provide important biological insights. - This volume provides descriptions of the occurrence of the UPR, methods used to assess it, pharmacological tools and other methodological approaches to analyze its impact on cellular regulation - The authors explain how these methods are able to provide important biological insights
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Methods in Enzymology: The Unfolded Protein Response and Cellular Stress, Part B;4
3;Copyright;5
4;Contents;6
5;Contributors;12
6;Preface;18
7;Methods in Enzymology;20
8;Chapter 1: Methods for Investigating the UPR in Filamentous Fungi;50
8.1;1. Introduction;51
8.2;2. Conditions to Study the UPR in Filamentous Fungi;54
8.3;3. Analysis of Expression During the ER Stress;60
8.4;4. Modifying the UPR Signaling by Targeted Gene Replacement;63
8.5;Acknowledgments;74
8.6;References;75
9;Chapter 2: Assays for Detecting the Unfolded Protein Response;80
9.1;1. Introduction;82
9.2;2. Experimental Approaches for the Detection of ER Stress;85
9.3;3. Concluding Remarks;96
9.4;Acknowledgments;98
9.5;References;98
10;Chapter 3: Analysis of the Role of Nerve Growth Factor in Promoting Cell Survival During Endoplasmic Reticulum Stress in PC12;102
10.1;1. Introduction;103
10.2;2. Induction of ER Stress in PC12 Cells;104
10.3;3. Measurement of Caspase-3 Activity;111
10.4;4. Fragmentation of Caspase-12;112
10.5;5. Hyperinduction of GRP78 by NGF;114
10.6;Acknowledgments;117
10.7;References;117
11;Chapter 4: Measuring ER Stress and the Unfolded Protein Response Using Mammalian Tissue Culture System;120
11.1;1. Introduction;121
11.2;2. ER Stress and the UPR;122
11.3;3. Cell Culture System and ER Stress Induction;125
11.4;4. Measuring ER Stress;127
11.5;5. Studying the UPR Activation;128
11.6;6. Studying UPR Downstream Markers and Responses;133
11.7;Acknowledgments;137
11.8;References;137
12;Chapter 5: Real-Time Monitoring of ER Stress in Living Cells and Animals Using ESTRAP Assay;142
12.1;1. Introduction;143
12.2;2. SEAP Reporter System;144
12.3;3. Monitoring of ER Stress in Culture Cells by ESTRAP;145
12.4;4. Monitoring of ER Stress In Vivo by ESTRAP;150
12.5;5. Conclusion;153
12.6;References;154
13;Chapter 6: HIV Protease Inhibitors Induce Endoplasmic Reticulum Stress and Disrupt Barrier Integrity in Intestinal Epithelial Cells;156
13.1;1. The Pathophysiological Relevance of HIV PI-Induced ER Stress and UPR Activation in IECs;157
13.2;2. Analysis of HIV PI-Induced ER Stress and UPR Activation in Cultured IECs;158
13.3;3. Analysis of HIV PI-Induced ER Stress and Disruption of Barrier Integrity in the Intestine;163
13.4;4. Summary;167
13.5;Acknowledgments;167
13.6;References;167
14;Chapter 7: Dexamethasone Induction of a Heat Stress Response;170
14.1;1. Introduction;171
14.2;2. Evaluation of the Heat Stress Response in Patients Treated with Dexamethasone;173
14.3;3. Heat Stress Response and UPR in Mice and Cellular Models;175
14.4;References;183
15;Chapter 8: Detecting and Quantitating Physiological Endoplasmic Reticulum Stress;186
15.1;1. Introduction;187
15.2;2. Detecting UPR at the Level of UPR Sensors;188
15.3;3. Quantitating ER Stress at the Level of UPR Sensors;190
15.4;4. Detecting Levels of Other Common UPR Targets;191
15.5;5. Important Tips;192
15.6;6. Concluding Remarks;193
15.7;Acknowledgments;194
15.8;References;194
16;Chapter 9: PI 3-Kinase Regulatory Subunits as Regulators of the Unfolded Protein Response;196
16.1;1. The Unfolded Protein Response;197
16.2;2. PI 3-Kinase Regulatory Subunits as Modulators of the UPR;199
16.3;3. Assessing UPR Pathway Activation;200
16.4;References;206
17;Chapter 10: The Emerging Role of Histone Deacetylases (HDACs) in UPR Regulation;208
17.1;1. HDAC Enzymes and Cancer;208
17.2;2. HDAC Inhibitors;209
17.3;3. HDAC Inhibition and the UPR;211
17.4;4. Future Directions;221
17.5;References;222
18;Chapter 11: Immunohistochemical Detection of Activating Transcription Factor 3, a Hub of the Cellular Adaptive-Response Network;224
18.1;1. Introduction;225
18.2;2. An IHC Protocol for ATF3;230
18.3;Acknowledgments;241
18.4;References;241
19;Chapter 12: Experimental Approaches for Elucidation of Stress-Sensing Mechanisms of the Ire1 Family Proteins;244
19.1;1. Introduction;245
19.2;2. Monitoring In Vivo Activity of Mutated Ire1 Family Proteins;248
19.3;3. Interaction Between BiP and the Ire1 Family Proteins;255
19.4;4. Direct Interaction of Unfolded Proteins with Yeast Ire1 but not with Mammalian IRE1a;259
19.5;5. Conclusion and perspective;262
19.6;Acknowledgments;263
19.7;References;263
20;Chapter 13: Measurement and Modification of the Expression Level of the Chaperone Protein and Signaling Regulator GRP78/BiP...;266
20.1;1. Introduction;267
20.2;2. Detection of Total GRP78;269
20.3;3. Detection of Cytosolic GRP78 Isoform;273
20.4;4. Detection of Cell Surface GRP78;277
20.5;Acknowledgments;280
20.6;References;281
21;Chapter 14: The Endoplasmic Reticulum-Associated Degradation and Disulfide Reductase ERdj5;284
21.1;1. Introduction;285
21.2;2. Productive Folding of Newly Synthesized Proteins in the ER;287
21.3;3. ERAD: A Strategy for ERQC Mechanism;291
21.4;4. Conclusion;298
21.5;References;301
22;Chapter 15: Structural Insight into the Protective Role of P58(IPK) during Unfolded Protein Response;308
22.1;1. Endoplasmic Reticulum Stress and Unfolded Protein Response;309
22.2;2. P58(IPK) Might be a Dual-Function Protein;310
22.3;3. Knocking Out P58(IPK) in Mouse Models;310
22.4;4. P58(IPK) is an ER-Resident Hsp40;311
22.5;5. Crystal Structure of Mouse P58(IPK) TPR Domain;312
22.6;6. P58(IPK) Functions as a Molecular Chaperone to Bind Unfolded Proteins Using Subdomain I;313
22.7;7. Structural Basis for P58(IPK) J Domain-BiP Interaction;316
22.8;8. Working Model of P58(IPK) During UPR;316
22.9;9. Future Research;316
22.10;References;317
23;Chapter 16: Principles of IRE1 Modulation Using Chemical Tools;320
23.1;1. Introduction: The Unfolded Protein Response;321
23.2;2. Structural Biology of IRE1-XBP1 Signaling;325
23.3;3. Chemical Approaches to Modulate IRE1 Function;331
23.4;References;341
24;Chapter 17: Methods to Study Stromal-Cell Derived Factor 2 in the Context of ER Stress and the Unfolded Protein Response...;344
24.1;1. Introduction;345
24.2;2. Arabidopsis sdf2 T-DNA Insertion Lines;346
24.3;3. Inducing and Monitoring ER Stress in Arabidopsis sdf2 Mutants;348
24.4;4. Analyzing the ER Stress-Induced Expression Pattern of SDF2 in Arabidopsis;353
24.5;5. The Subcellular Localization of SDF2;358
24.6;6. Purification of Recombinant SDF2 Protein from E. coli;362
24.7;Acknowledgments;365
24.8;References;366
25;Chapter 18: Nitrosative Stress-Induced S-Glutathionylation of Protein Disulfide Isomerase;370
25.1;1. Introduction;371
25.2;2. Identification and Confirmation of S-Glutathionylated Proteins in Cells;373
25.3;3. Identification of Target Cysteine Residues;376
25.4;4. Characterization of Structural and Functional Consequences of S-Glutathionylated PDI;378
25.5;5. Summary;380
25.6;Acknowledgments;380
25.7;References;380
26;Chapter 19: Methods for Analyzing eIF2 Kinases and Translational Control in the Unfolded Protein Response;382
26.1;1. Introduction to Translational Control in the UPR;383
26.2;2. Measuring Activation of the eIF2 Kinase Pathway During ER Stress;387
26.3;3. Investigating General and Gene-Specific Translation Control;394
26.4;Acknowledgments;402
26.5;References;402
27;Author Index;406
28;Subject Index;424
29;Colour Plate;441